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Introduction

We hope that instructors will find this a convenient and useful resource.
We have tried to create a collection of interesting problems that can be
attacked by high school students. Most of the problems stress ideas and
techniques from school mathematics which, we believe, should be reinforced.
The problems also at times dip into the puzzle tradition.

The solutions provided are meant to convey a set of attitudes: that math-
ematics deals with very concrete matters; that there can be many ways to
attack a problem; that the calculator can be a foe or a friend; that structure
and symmetry are often the key; and that in the beginning is the idea. The
comments after the solutions are made in order to provide some historical
background, point forward to related mathematics, or suggest related prob-
lems. Some comments are made to express an opinion about how certain
material could be presented. There is, for example, frequent emphasis on
diagrams. A few of the problems presented here look forward to more ad-
vanced material, and could serve as the beginning of longer explorations.
Material is included that can be helpful in preparation for mathematics
contests, in particular the Fermat and the Euclid, but it cannot replace
systematic practice with previous contests.

The Intended Audience

The problems in this collection are meant for senior high school students,
though in many cases the mathematical concepts required for their solution
begin to be explored in the junior years. There are entire chapters (Word

Problems, Counting, and Number Theory) in which every problem could
be successfully tackled by a determined grade 9 student. The Probability

chapter might require knowledge of grade 10 or grade 11 material, but has no
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problems that require grade 12 material. Only the Trigonometric Functions

and Maxima and Minima chapters can be regarded as accessible primarily
to grade 12 students. Knowledge of calculus is not needed. Almost all of
the references to calculus are instructions not to use it.

The solutions are in the main directed to instructors who want to present
some of the problems to regular classes or to special problem sessions. The
solutions could be described as script outlines meant to identify certain
themes that are worth emphasizing (such as attention to symmetries, the
physical context, elegance, and the fact that we are dealing with something
real, not manipulating symbols), to describe possible modes of approach, and
to serve as suggestions that invite improvement. Although in most cases a
good deal of detail is supplied—only some routine calculations are omitted—
the solutions of some problems are written in a style too telegraphic to be
read with comfort by all students.

Computation vs. Proof

Most of the problems are computational, in the sense that they ask for a
number or numbers. There are only a couple of dozen instances where a
proof is explicitly asked for. This is partly because the word “proof” can be
intimidating. And often the distinction between what is obvious and what
needs to be justified is subtle and context-dependent.

But whether a problem asks for a number or a proof, the mental processes
required are similar. Computations and proofs are in fact indistinguishable
in a logical sense: In the end something must be demonstrated. The ex-
planations that accompany the calculation of an area, or of a probability,
can be thought of as a proof that the number found is correct. And all
calculations ought to be presented with attention to the logical flow of the
argument, in complete sentences.

Most of the problems are meant to be solved using traditional tools—the
trained imagination, assisted by paper and pencil. But a simple scientific
calculator will be useful, and occasionally a graphing calculator can pro-
vide insight or even a satisfactory answer. Calculator-related issues come
up fairly often in the solutions and comments, particularly in the chapter
Problems in Computation.

The Level of Difficulty

Many of the problems in this collection are not easy. If a question were easy,
how could it be a problem? The problems are intended to be more challeng-
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ing than the usual questions asked on Provincial Exams, where students
are asked to answer too many too easy questions in too little time. But
these problems should not be treated like questions on multiple choice ex-
ams, where what is not completely right is wrong. A good diagram, and/or
numerical experimentation, often represent considerable progress, for they
are a sign that the question is thought of as dealing with something real,
and that a genuine assault has begun: Mathematics is a contact sport.

Organization

The problems are divided by topic into ten chapters, with an additional
chapter of problems with short solutions. Although a division into topics
cannot be exact, it was done so that the user might search for a particu-
lar kind of question without having to scan five hundred of them. Within
chapters, problems do not necessarily get harder, although there is some

clustering of the harder ones toward the end of each chapter. Some of the
early problems in a chapter are solved in a more leisurely style and are more
heavily commented than later problems.

What Remains to be Done

The material is still in a fairly raw state. The comments could be substan-
tially expanded, both in number and in length. But more importantly, there
are fewer than four hundred problems, and for almost all of them only one or
two solutions. Several solutions for more of the problems should be written
if the reader is to see several ideas at work more often. We believe that time
will bring these new solutions along. In the classroom, students and others
working on these problems will come up with arguments that are nicer, or
more natural to them, than the arguments presented here. In this process,
the parts that are obscure, difficult, or even wrong will become apparent.

Pictures have been supplied only for about half of the solutions that
need them. In the remaining cases, the required diagrams are verbally de-
scribed in the solution, but that is not adequate because diagrams are an
indispensable tool for visualization. The picture, the soul of the idea, cannot
effectively be replaced by strings of words.

Interesting solutions and suggested improvements are very welcome. These
will be acknowledged in the next edition. Comments can be directed to:
adler@math.ubc.ca

Andrew Adler
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Chapter 1

Word Problems

Introduction

These problems are of the kind sometimes called “word problems,” that is,
problems in which a situation is described in words, using a minimum of
mathematical terms, and the solver needs to decide how to bring mathe-
matics to bear. Word problems can produce more apprehension than even
quite complicated symbolic manipulations.

The first step toward a solution is to produce a mathematical model of
the situation described by the words. That’s not always easy, and often
simplifying assumptions need to be made: a mathematical model and the
physical reality are different things. In some of the solutions attention is
drawn to possible deficiencies of the model used.

The technical background needed to solve these problems is modest, just
basic algebra, and often not even that. But before a word problem is solved,
it has to be read, and these word problems have sometimes been made a little
wordier than usual. The equations that arise are in the main linear, with
an occasional quadratic. Once a method of attack has been found, filling in
the details is not difficult—but that does not mean that the problems are
all easy.

This chapter, unlike the others, has many historically significant prob-
lems and puzzles. In a number of cases, two sorts of solutions are given:
modern “algebraic” ones, and more old-fashioned “rhetorical” solutions that
use a minimum of machinery.

1



CHAPTER 1. WORD PROBLEMS 2

Problems and Solutions

I-1. An exam was given to 25 students, and each student got a mark between
0 and 100. Let µ be the mean of the marks, and let m be the median. It
turned out that |µ −m| was as large as possible. What can be said about
µ?

Solution. Let the marks be x1, x2, . . . , x25, where x1 ≤ x2 ≤ · · · ≤ x25. Then

µ =
x1 + x2 + · · ·+ x25

25
and m = x13.

Subtract, and temporarily drop the denominator 25. We study y, where

y = x1 + x2 + · · ·+ x12 − 24x13 + x14 + · · ·+ x25.

For any fixed value of x13, y is maximized by making x1 = x2 = · · · = x13, and
x14 = x15 = · · · = x25 = 100. Thus given x13, the largest value of y is 1200−12x13.
This is maximized by taking x13 = 0. That gives |µ−m| = 48.

In the same way, we can show that the smallest value of y is obtained by taking
x1 = x2 = · · · = x12 = 0 and x13 = x14 = · · · = x25 = 100, so the minimum value
of µ−m is −48.

Since |µ−m| was as large as possible, we conclude that either there were thirteen
0’s and twelve 100’s, for a mean of 48, or twelve 0’s and thirteen 100’s, for a mean
of 52.

Comment. If the marks x1, x2, . . .x25 make µ−m equal to y, then by symmetry
the marks 100 − x25, 100 − x24, . . . , 100 − x1 make µ − m equal to −y. So the
second computation was unnecessary: given that |µ − m| is as large as possible,
there are always two possible means, and they add up to 100.

I-2. After competing in the school’s Sports Day, Ms. Z and her class—there
were between twenty and thirty of them—joined as a group the lineup for
muffins and drinks. After a while more classes got in line behind them. At
a certain point one-fifth of the line was in front of Ms. Z and her class, and
twelve-seventeenths of the line was behind them. How many students are
there in Ms. Z’s class?

Solution. Altogether, the people in front of Ms. Z and her class plus the ones behind
them make up a fraction 1/5 + 12/17 of the whole line. Bring the fractions to the
common denominator 85 and add: the result is 77/85, so Ms. Z and her class
make up the fraction 8/85 of the whole line. There are between 20 and 30 of them
altogether, so there must be 3 ·8, and therefore there are 23 students in the class.

I-3. Alphonse and Beth did a lap on the school 400 meter track, starting at
the same time and place but running in opposite directions. Beth finished
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27.2 seconds after they passed each other, and Alphonse finished 42.5 after
they passed. Each ran at constant speed. How long did Beth take to run
the lap?

Solution. Let t be Beth’s lap time. Then Alphonse’s time is t+(42.5−27.2). Their
running speeds are therefore

400

t
and

400

t+ 15.3
.

The distances they ran after they passed are

27.2
400

t
and 42.5

400

t+ 15.3
.

These distances add up to 400. After simplifying, we obtain the equation t2 −
54.4t− (15.3)(27.2) = 0. By the quadratic formula, t = 61.2.

Another way: More generally, suppose that Alphonse finishes a seconds after they
pass and Beth finishes b seconds after they pass. Let p be Alphonse’s speed and
let q be Beth’s, and let t be the time they run before they meet. So when they
meet Alphonse has run a distance pt, and Beth has run a distance qt. To finish,
Alphonse needs to run a distance qt, which takes him time qt/p. Similarly, it takes
Beth time pt/q to finish after they pass. We were told that

qt

p
= a and

pt

q
= b.

Multiply. We get t2 = ab, so t =
√
ab. Thus Beth’s running time is

√
ab+b. Finally,

put a = 42.5 and b = 27.2. Beth ran the lap in 61.2 seconds.

Comment. Nice run! The first solution is efficient, but we prefer the second for its
greater symmetry. Working with the “general” a and b is often more informative
(and simpler!) than working with particular numbers.

I-4. When train A goes at full speed, it takes 8 seconds to pass a certain
point on the track. Train B takes 12 seconds to pass the same point. The
trains are going at full speed in opposite directions on parallel tracks. What
can be said about the time it takes them to pass each other?

Solution. Let a be the speed of train A, in kilometers per second, and let b be the
speed of B. So the length of A is 8a, the length of B is 12b, and their relative speed
is a+ b.

If t is the time it takes them to pass each other, then

t =
8a+ 12b

a+ b
= 8 +

4b

a+ b
.

Let a = xb. Then 4b/(a + b) = 4/(x + 1). . As x increases from 0, the function
4/(x+ 1) travels from 4 toward 0. We conclude that 8 < t < 12.



CHAPTER 1. WORD PROBLEMS 4

Comment. We can’t say more without some knowledge about physical properties of
trains. The ratio of the maximum speeds of real trains travels not over the interval
(0,∞), but over a much smaller interval, maybe something like [1/8, 8]. There are
also constraints on the lengths of real trains.

I-5. A man carrying rice passes through three local customs posts. At the
first, he has to give up one-third of his rice. At the second, he gives up
one-fifth of what remains, and at the third, one-seventh of what remains.
He ends up with 5 measures of rice. How much did he start with?

Solution. We can work backwards. The 5 measures are six-sevenths of what he
had before going through the third post. So he arrived at the third post with
5(7/6) measures. The same argument shows that he arrived at the second post
with 5(7/6)(5/4) measures, and at the first with 5(7/6)(5/4)(3/2), that is, 10 15

16
measures.

Another way: If he had started with 105 measures of rice, then he would have 70
after going through the first post, 56 after the second, and 48 after the third. But
in fact he only has 5, so he must have started with 105(5/48).

Another way: Let x be the amount of rice he starts with. After going through the
three posts, he is left with x(2/3)(4/5)(6/7). Set this equal to 5 and solve for x.

Comment. This problem, adapted from the Jiuzhang suanshu, testifies eloquently
to the rapacity of officials. There are dozens of variants from India, the Greek
world, and Medieval and Renaissance Europe.

I-6. One morning, Alan set out to walk the 2 kilometers to school. Three
minutes after he left, his mother Beth realized that he had forgotten his math
homework and set out after him. She caught up to Alan and immediately
headed back home. Beth got home at exactly the same time as Alan got to
school. Beth walked at a brisk 8 kilometers per hour. How fast did Alan
walk?

Solution. Let d be the distance from home to where Beth caught up to Alan, and
let s be Alan’s walking speed. It took Beth d/8 hours to walk back home. In that
time Alan walked the remaining (2− d) kilometers to school, so

d

8
=

2− d

s
,

which simplifies to ds = 16− 8d, or equivalently d = 16/(s+ 8).
Beth took 3 minutes less than Alan to cover distance d, so

d

s
=

d

8
+

1

20
.
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Substitute 16/(s+ 8) for d in the above equation. Things look messy at first, but
by multiplying through by 20s(s+8) we arrive at s2+48s−320 = 0. The quadratic
formula yields s = −24 +

√
896, so Alan walked at about 5.9 kilometers per hour.

Another way: The above two variable approach seems natural. Nothing very simple
can work, for a quadratic equation is unavoidable. For variety we describe an
equivalent approach that uses geometric language.

A
B

C

M

X

S

Figure 1.1: Going to School

In Figure 1.1, the horizontal axis represents time and the vertical axis represents
space. The point A is Alan’s starting point in space-time, B is Beth’s, M is the
event of their meeting, S is Alan’s arrival at school, and C is Beth’s arrival back
home. So AS is Alan’s path in space-time, and BMC is Beth’s.

Note that AB = 0.05 (three minutes) and SC = 2. Let t = BX . So t is the
time it took for Beth to catch Alan. Since Beth walked at 8 km per hour, MX = 8t.
Triangles AMX and ASC are similar, and therefore

8t

0.05 + t
=

2

0.05 + 2t
.

Simplify. We obtain the quadratic equation 160t2 − 16t − 1 = 0, which has the
solution t = (16 +

√
896)/320. Thus AC, the time Alan took to get to school, is

about 0.337, so his speed is about 5.9 km per hour.

I-7. There are some rabbits and pheasants in a cage. In total there are 35
heads and 94 feet. How many of each animal are there?

Solution. Let r be the number of rabbits, and p the number of pheasants. From
the two given totals we obtain the equations

r + p = 35 and 4r + 2p = 94.

There are several ways to solve this system. For example, draw the lines r+p = 35
and 4r + 2p = 94, find out where they appear to meet, and check that what seems
to be the solution really is.

Or else note that the first equation is equivalent to 2r+2p = 70, and therefore

(4r + 2p)− (2r + 2p) = 94− 70,
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from which we conclude that r = 12 and therefore p = 23.

Another way: There is no need of symbols. Guess that there are 35 pheasants and
no rabbits. The number of heads is then right, but the number of feet is 70, wrong
by a lot. Start trading in pheasants for rabbits. For each pheasant traded in, we
gain 2 feet. In order to gain 24 feet, we need 12 rabbits.

Another way: Ask the rabbits to stand on their hind feet and dance. Each animal
now has two feet on the ground, for a total of 70. There are (94 − 70) feet in the
air, 2 per rabbit, so there are 12 rabbits.

Comment. Versions of this problem have appeared in problem collections for more
than two millenia. This one is taken from the Jiuzhang suanshu (Nine Chapters
on the Mathematical Art), which was probably compiled around −200 from older
sources.

I-8. A person remarked that upon his wedding day the proportion of his
own age to that of his bride was as 3 to 1; but fifteen years afterwards the
proportion of their ages was 2 to 1. What were their ages upon the day of
their marriage?

Solution. Let the bride’s age on marriage be x; the groom’s was therefore 3x.
Fifteen years later their ages are x+ 15 and 3x+ 15. We are told that 2(x+15) =
3x+ 15. Thus x = 15, and their ages on marriage were respectively 15 and 45.

Comment. This problem comes from The Ladies’ Diary, which published puzzles
and problems for an English upper income readership from 1704 to 1841. A modern
version of the problem would presumably use different numbers.

I-9. The water supply of a desert outpost is stored in a cistern from which
water evaporates at a constant rate. There is enough water in the cistern
to supply 60 people for 30 days, or 30 people for 50 days. How long will the
water supply hold out if there are 10 people at the outpost?

Solution. Let a be the amount of water lost to evaporation each day, and let b be
the amount a person uses per day. It is convenient to choose our unit of volume in
such a way that b = 1. So the sun drinks as much water each day as a people.

There is enough water to take care of 60 people (and the sun) for 30 days. So
there are 30(a+60) units of water in the cistern. But the water would take care of
30 people for 50 days, so

30(a+ 60) = 50(a+ 30).

Thus a = 15 and there are 2250 units of water in the cistern. That will take care
of 10 people for 2250/(15 + 10) days.
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Comment. Newton’s Arithmetica Universalis (1707) has a mathematically equiva-
lent problem. If 12 oxen eat up 3 1

3 acres of grass in 4 weeks, and 21 oxen eat up 10
acres in 9 weeks, how many oxen will eat up 24 acres in 18 weeks, the grass being
at first equal on every acre, and growing uniformly.

I-10. Fresh mushrooms are 90% water. Dried mushrooms are only 15%
water. (a) How many kilograms of fresh mushrooms do we need to make
10 kg of dried mushrooms? (b) How many kg of dried mushrooms do we get
from 12 of fresh?

Solution. (a) The 10 kg of dry are 85% “mushroom powder” and 15% water, so
there are 8.5 kg of powder. That represents 10% of the fresh weight, which is
therefore 85 kg. (b) Note from part (a) that 10 kg of dry come from 85 of fresh, so
12 of fresh yield 12(10/85) of dry.

I-11. (Leonardo of Pisa, 1202) One man had three loaves of bread, the other
had two. When they sat down to eat, a soldier joined them and shared their
meal. Each person ate the same amount. When all the bread was eaten, the
soldier left 5 bezants to pay for his meal. How should the money be shared
between the two men?

Solution. They should go to an inn and use the 5 bezants to share a jug of wine.
We get a different answer if we take a crude monetary point of view. The soldier
ate 5/3 loaves, which he valued at 5 bezants. Thus 1/3 of a loaf is worth 1 bezant.

The first man started out with 3 loaves and ate 5/3 loaves, so he contributed
(3 − 5/3) loaves, that is, 4/3 loaves, worth 4 bezants, to the soldier’s meal. The
second man’s contribution is only worth 1 bezant.

I-12. A certain lion would eat a sheep in 4 hours; the leopard would eat a
sheep in 5 hours; and it takes the bear 6 hours. It is asked, if one sheep
had been thrown among them, how many hours would they have taken to
devour it.

Solution. The eating rates of lion, leopard, and bear are respectively 1/4, 1/5, and
1/6 sheep per hour. Thus their combined eating rate is 1/4 + 1/5 + 1/6. Let x
be the number of hours it takes them companionably to eat one sheep. Then their
combined rate is 1/x, and therefore

1

x
=

1

4
+

1

5
+

1

6
.

We can use a calculator to add the fractions, and then invert. Or else bring the
right-hand side to the common denominator 60. We conclude that 1/x = 37/60
and therefore x = 60/37.

Another way: Suppose that many sheep are available, and feasting goes on at
constant rate for 60 hours. The lion will have disposed of 15 sheep, the leopard of
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12, and the bear of 10, for a total of 37 sheep in 60 hours. Thus when they have
dinner together it takes them 60/37 hours to eat one sheep.

Comment. This problem is taken from Leonardo of Pisa’s Liber abbaci (1202).
Mathematically equivalent problems have a long history, and can still be found in
school books. The first surviving variant comes from Heron of Alexandria (100?).
A cistern can be filled by a large pipe in two hours, by a medium sized pipe in three
hours, and by a small pipe in six. How long does it take to fill the cistern using all
three pipes?

The “rates” machinery used in the first solution is quite abstract. It isn’t
obvious that one should add rates and not hours.

I-13. Yorick went on a crash diet. His weight dropped from 140 pounds to
120 pounds in 60 days. Every day he lost an amount proportional to his
weight at the start of that day. How much weight had Yorick lost after 30
days of dieting?

Solution. If Yorick’s weighs w pounds at the start of a certain day, then he loses
kw that day, where k is a constant, so he weighs (1 − k)w pounds at the start of
the next day. It follows that he weighs (1 − k)2w pounds at the start of the day
after that, and so on. After 60 days he weighs (1−k)60w pounds. We are told that

120 = 140(1− k)60.

Thus (1 − k)60 = 120/140. Yorick’s weight after 30 days is 140(1 − k)30, that is,
140(120/140)30/60, or more simply

√
120 · 140. It’s time to use the calculator. In

the first 30 days he lost about 10.4 pounds.

Comment. Someone might guess that halfway into his diet Yorick would have lost
10 pounds. A little thought shows that can’t be right, since he loses weight at a
faster rate when he is heavier.

What’s interesting is how nearly right it is. Yorick’s weight after half the time
is not the arithmetic mean (140 + 120)/2 of the two weights, but their geometric
mean

√
140 · 120. If two numbers have ratio not far from 1, then their arithmetic

mean and geometric mean are nearly equal.
We can get a dramatic illustration of this fact by using a graphing calculator.

Let a be positive; for example take a = 10. Let u and v be positive numbers that
add up to a. Their arithmetic mean is a/2, and their geometric mean is

√

u(a− u).

Ask the graphing calculator to graph the half-circle y =
√

x(a− x). The display
shows that y is nearly constant as x ranges over numbers not too far from a/2—the
circle is nearly flat on top, just like the surface of a calm sea is locally flat.

I-14. A hare starts with a lead of 100 paces. A dog then starts chasing it.
When the dog has run 250 paces, it is still short of the hare by 30 paces.
How many more paces must the dog run to catch the hare?
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Solution. Assume that each animal runs at constant speed (this is undoubtedly
contrary to fact). The dog gained 70 paces while running 250. To gain another 30
it must therefore run an additional 250(30/70) paces. The problem is solved, but
maybe we should calculate: the answer is about 107 paces. One reason to calculate
is that we can quickly decide whether the answer makes physical sense, and thus
get a partial check on the correctness of the solution.

We get essentially the same solution by letting a be the additional amount that
the dog must run, and noting that a/30 = 250/70.

Another way: Symbolic algebra can play a larger role—we can invent symbols for
various unknowns, find equations that link the unknowns, and solve. For example,
let h be the speed of the hare, and d the speed of the dog. While the dog runs 250
paces, the hare runs 250− (100− 30), and therefore d/h = 250/180.

Let x be the total distance the dog runs until it catches the hare. That is 100
more than the distance that the hare runs, and therefore x/(x − 100) = d/h =
250/180. Simplification yields the linear equation 180x = 250x − (100)(250). Fi-
nally, solve for x and subtract 250 to find the answer.

Comment. Problem I-14 is adapted from one of the beginning problems in the
Jiuzhang suanshu (Nine Chapters on the Mathematical Art) which according to Liu
Hui (250?) is based on ancient learning that was set down again around −200. Nine
Chapters, like most of the Chinese mathematical documents that have survived, was
designed as a resource for those in the business of training students.

Nothing very ancient has survived intact. This is sometimes attributed to the
fact that in −213 the Emperor Shih Huang-ti ordered all books burned and all
scholars buried. In any case, the humid climate of much of settled China was not
kind to paper documents. By way of contrast, the desert conditions and burial
practices of Egypt preserved many papyrus scrolls. And the Babylonians wrote on
clay that they then baked. The resulting tablets can last virtually forever.

I-15. An internet service provider allows its customers a certain number of
“free” hours per month and charges for each hour beyond that. A, B, and
C have separate accounts with this company.

This month, the sum of the hours that A and B were logged on was 105.
Each ended up paying a surcharge, and between them they had to pay a
total surcharge of $10. C all by herself used 105 hours, and had to pay a
$26 surcharge. What is the charge for each extra hour?

Solution. Let f be the number of free hours, and s the surcharge per extra hour.
Let a and b respectively be the number of hours that A and B were logged on, and
u and v the surcharges they paid.

The information we were given is summarized by the equations

a+ b = 105; u+ v = 10; s(a− f) = u; s(b− f) = v; s(105− f) = 26.

“Add together” the third and fourth equations. (Strictly speaking, we can’t add
equations, for an equation is an assertion that two things are equal.) Then use the
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first two equations to simplify. We obtain s(105 − 2f) = 10. This, together with
the fifth equation, gives sf = 16. If we substitute in the fifth equation, we find that
105s = 42, and therefore the surcharge is 40 cents per hour.

Another way: The preceding solution used five variables. Here is a solution at the
other extreme—we find the answer using no algebra at all. Between them, A and
B paid $16 less than C in surcharges. Since both A and B used up all of their free
hours, the $16 must be the value of one account’s free hours. Thus if free hours
were suddenly charged for at the same rate as extra hours, then C would have to
pay a total of $42 for her 105 hours. It follows that extra time costs $0.40 per
hour.

Comment. The first approach was quite mechanical—which of course doesn’t mean
bad, indeed there is much to be said in favour of mechanical. We invented variables
for everything in sight, found equations that link the variables, and then solved. The
solving had to be tackled in a specific order. Not enough information is provided to
determine how much A had to pay in surcharges. So a and b can’t be separated, and
neither can u and v. Thus adding the third and fourth equations was essentially a
forced move.

The idea for this problem was borrowed from a standard problem about ex-
cess luggage on an airplane, which of course was borrowed from an earlier source.
Charles Smith’s A Treatise on Algebra, published in 1888, has an excess luggage
problem.

I-16. A floor refinisher can strip the old wax from 35 square meters of floor
per shift. Once the wax is stripped, she can apply new wax to 65 square
meters of floor per shift. How many square meters should the refinisher strip
so as to work the entire shift and leave no stripped floor unwaxed?

Solution. It takes x/35 of a shift to strip x square meters of floor. To put new wax
on these x square meters uses up an additional x/65 of a shift, and therefore the
total time needed is x/35 + x/65 shifts. If precisely one shift is to be used, then
x/35 + x/65 = 1. Solve for x in the usual way: x = (35 · 65)/(65 + 35) = 22.75.

Another way: We can find the answer without any x. It takes (1/35 + 1/65) of a
shift to strip and wax 1 square meter, so the number of square meters that can be
stripped and waxed in one shift is 1/(1/35 + 1/65).

Another way: Two hundred years ago, the problem would probably have been
solved by using regula falsi, the “Rule of False Position.” The idea is that you
guess an answer, test it, then use the result of the test to get, in one step, the right
answer. The Rule of False Position is completely different from the “guess and test”
procedures sometimes encouraged in the schools. School “guess and test” is based
on the fact that answers are engineered to be small integers.

Guess that the refinisher should strip 35 · 65 square meters. Let’s see whether
we got lucky. The 35·65 square meters will take 65 shifts to strip, and 35 to wax, for
a total of 100 shifts. Not a very good guess! But all is not lost: since stripping and
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waxing 35 ·65 square meters requires 100 shifts, she can strip and wax (35 ·65)/100
square meters in 1 shift.

The fact that numbers worked out nicely is built into the method: like users of
regula falsi were taught to do, we chose 35 · 65 because dividing this by 35 or 65 is
easy. Another good guess is 5 · 7 · 13, the least common multiple of 35 and 65.

Comment. We tacitly assumed that the amount of work done in time t, for example
the area stripped, is a constant times t. This assumption is almost certainly false.

Regula falsi methods—there are several—were used in ancient Egypt and In-
dia, and were taught in Europe for hundreds of years, finally disappearing in the
twentieth century.

Why was regula falsi so popular? Because it helped with two common fears—
fear of fractions and fear of abstraction. The use of symbols for unknowns only
dates back, in Western Europe, to the seventeenth century, and took a long time
to diffuse beyond the scientific community. So the now standard algebraic methods
were unavailable. And maybe the user of regula falsi retains continuous concrete
grasp of the problem more than the x-manipulator.

I-17. A punctual mathematician cycles to her office every day along the
path beside the railway track, at 12 km/h. When the morning train is on
schedule, it reaches a certain crossing at the same time as she does. One
day the train set out 10 minutes behind schedule, but ran at its usual speed.
The train caught up to the mathematician 2.4 km past the crossing. Find
the speed of the train.

Solution. Let v be the speed of the train. Imagine that the mathematician lives
along the track, at distance d from the crossing. So ordinarily when the mathe-
matician starts, the train is at distance dv/12 from the crossing. Since the train is
10 minutes late, this time it is dv/12 + v/6 from the crossing.

The mathematician travels the distance (d+ 2.4) in time (d+ 2.4)/12. This is
the same as the time it takes the train to travel dv/12 + v/6 + 2.4. Thus

d+ 2.4

12
=

dv/12 + v/6 + 2.4

v
.

Simplify and solve for v. The terms in d cancel, as they must, since the value of d
is irrelevant—we could have assumed from the beginning that her house is at the
crossing. It turns out that v = 72.

Another way: The train reached the crossing 10 minutes after the mathematician
did. When the train reached the crossing, the mathematician was 12(10/60)km
beyond the crossing, so she was 2 km ahead of the train.

While the train travelled 2.4 km, the mathematician travelled (2.4− 2) km. So
the speed of the train is (2.4/0.4)(12), that is, 72 kilometers per hour.

Another way: Draw a space-time diagram. In Figure 1.2, the x-coordinate of a
point represents time, and the y-cooordinate is distance from the crossing. Let ! be
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C

M

!

Figure 1.2: The Mathematician and the Train

the line with slope 12 that passes through the origin. (For convenience, the scales
on the two axes are quite different.) Then ! represents the mathematician’s path
in space-time. Let M be the point on ! that has y-coordinate 2.4, and let C be
the point on the x-axis with x-coordinate 1/6 (10 minutes). Then the line CM
represents the train’s path in space-time, and the slope of CM is the train’s speed.
This can be measured from the graph, or computed by noting that the x-coordinate
of M is 0.2.

I-18. A rich merchant died, and left gold coins to his children as follows.
The eldest got 100 coins, plus one-fifteenth of what remained of the coins
after that. The next got 200 coins, plus one-fifteenth of what remained after
that. And the next got 300 coins, and one-fifteenth of what remained, and
so on. As it turned out, all the gold coins were distributed, and everyone got
exactly the same amount. How many children were there, and how much
did each get?

Solution. Let n be the number of children. For simplicity, we work with bags of 100
coins. If it is indeed possible for each child to get the same amount, with nothing
left over—that will have to be checked—then each child got n bags. This follows
from the fact that the last child got n bags plus one-fifteenth of what remained,
but nothing remained. The total fortune is therefore n2.

The first child got 1+(n2−1)/15 bags, and they all got n, so (n2−1)/15 = n−1.
The wording of the problem doesn’t allow n = 1, so we conclude that n = 14 and
everyone got 1400 coins. We cannot yet conclude that the answer is 1400, for this
number was obtained by assuming that the division described in the problem is
possible. Maybe it isn’t; problem posers make mistakes.

We check that in general a fortune of n2 units can be distributed equally among
n children, with the k-th child receiving k units plus the (n + 1)-th part of what
remains.

The first child receives 1 + (n2 − 1)/(n + 1), and this is equal to n. Suppose
now that children 1, 2, . . . , k − 1 have each received n. First give k to the k-th
child. There remains n2 − (k− 1)n− k, that is, (n+1)(n− k). The (n+1)-th part
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of that is n − k, and k + (n − k) = n, so the k-th child also receives n units. We
conclude that all children get n units.

Comment. Versions of this inheritance problem can be found in Fibonacci’s Liber
abbaci (1202), Chuquet’s Triparty en la Science des Nombres (1484), and Euler’s
Algebra (1770). In Euler’s version, it turns out that there are nine children. Euler
himself had thirteen children.

Fibonacci probably borrowed this problem, like most of the others in Liber
abbaci, from an Islamic source. Bequest problems take up almost half of al-
Khwārizmı̄’s al-jabr w’al muqābala, the book whose title gave us the word algebra.
The complexity of the Koranic laws of inheritance inspired Islamic writers to make
up elaborate word problems.

I-19. A bowl held 10 liters of non-alcoholic punch. A chemistry major
took out a pitcherful, replaced it with a pitcherful of pure alcohol, and
mixed thoroughly. She took a tiny sip, then removed another pitcherful and
replaced it with a pitcherful of alcohol. The final mixture was 15% alcohol
by volume. How big is the pitcher?

Solution. Let P be the capacity of the pitcher in liters. After the first pitcherful
of alcohol is put in, the bowl contains P liters of alcohol, so the amount of alcohol
per liter of spiked punch is P/10.

When the second pitcherful is taken out, the amount of alcohol removed is
therefore P (P/10), so at the end there are 2P −P 2/10 liters of alcohol in the bowl.
But this is 15% of 10 liters, and therefore 2P − P 2/10 = 1.5.

We multiply through by 10 and obtain P 2 − 20P + 15 = 0. Why multiply?
Probably in the hope that the resulting quadratic will factor over the integers. It
doesn’t—most quadratics don’t—but the quadratic formula works just fine. One
root is greater than 10, so irrelevant. Thus P = 10−

√
85, about 0.78 liters.

Comment. We took it for granted that volumes add like numbers do. But when
different liquids are mixed, the volume of the mixture is ordinarily not equal to the
sum of the volumes—that happens in particular with alcohol and water. Taking
this effect into account doesn’t change the answer very much.

I-20. Alma walked in a charity walkathon. If she had made 20 cents less per
kilometer, she would have had to walk 5 more kilometers to raise as much
money as she did. If she had made 10 cents more per kilometer, she would
have had to walk 2 fewer kilometers to raise as much as she did. How much
money did she raise?

Solution. Let a be the amount, in cents, that Alma made per kilometer, and d the
distance she walked. Thus she raised ad cents. If she had walked 5 more kilometers
at rate of pay 20 cents less, she would have raised (a − 20)(d + 5). We conclude
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that ad = (a− 20)(d+5). Similarly, ad = (a+10)(d− 2). These equations simplify
to

5a− 20d = 100 and − 2a+ 10d = 20.

Solve for a and d by graphing the lines with the above equations and seeing where
they meet, or by algebraic methods. It turns out that a = 140 and d = 30, and
therefore she raised $42.00.

Another way: In the above solution, the ad terms cancelled and we got linear
equations. We should be able to argue our way to these directly.

Imagine that Alma has finished walking distance d, and is told that a sponsor
withdrew, and her rate of pay has gone down by 20 cents. So she has lost 20d. She
is determined to make that up and walks another 5 km, earning 5(p − 20). That
yields the equation 20d = 5(a−20). Similarly (new last minute sponsor), we obtain
the second linear equation, and solve as before.

Or make a rectangle, label the base “kilometers,” the height “cents.” The
amount of money raised is just the area of the rectangle. In another colour, increase
the base by 5, shrink the height by 20. The area doesn’t change, so what is lost
“on top” is exactly balanced by what is gained “on the right,” and therefore 20d =
5(a− 20).

I-21. Every weekday, A, B, and C cycle to the university along the same
road, each at unvarying speed. Yesterday, B passed C, and A went by C one
minute later. A caught up to B six minutes after passing C. This morning,
A passed B, and five minutes later passed C. When did B catch up with C?

Solution. Only the relative speeds of the riders matter. Since C is the slowest,
we use a frame of reference that travels with C, or equivalently imagine that C is
standing still, that C is a street Corner.

Yesterday, when A caught B they were both a certain distance past the Corner,
and A had covered this distance in 6 minutes while B took 7. So today it took B
5(7/6) minutes to do what A did in 5. We conclude that B passed C five minutes
and 50 seconds after B was passed by A.

Another way: We can be more explicitly algebraic. Let a, b, c be the speeds, in
units per minute, of A, B, and C. Let P be the point where B passed C yesterday.

When A went by C, the latter had travelled a distance c from P , while B had
travelled a distance b from P . At that time A was b − c behind B. It took 6 more
minutes for A to catch B, so b − c = 6(a − b). But a − b = (a − c) − (b − c), and
therefore b − c = 6(a− c) − 6(b − c). It follows that 7(b − c) = 6(a− c). The first
solution obtained this relationship more easily by using a frame of reference that
travels with C.

We next analyze what happens today in terms of a, b, and c. Let Q be the place
where A passes B. When this happens, C is 5(a−c) fromQ. Let t be the time it takes
for B to pass C. Then t(b−c) = 5(a−c), and therefore t = 5(a−c)/(b−c) = 5(7/6).

Comment. Yesterday and today can be made to look more similar by playing to-
day’s videotape backwards.
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For a character analysis of the people in this problem, see Stephen Leacock’s
essay “A, B, and C,” in Literary Lapses. Leacock points out that in algebra books,
A is always the fastest at walking, ditch digging, cutting wood, and poor C is always
the slowest.

I-22. A 600 pound pumpkin has been entered in a contest. When it arrived,
it was 99% water. After sitting in the warm sun for several days, it lost some
weight (water only), and is now 98.5% water. How much does it weigh now?

Solution. The pumpkin had 6 pounds of “solid” (non-water) matter. These 6
pounds make up 1.5% of the new weight, so the new weight is 6/0.015, that is,
400 pounds. We obtain essentially the same solution by letting the new weight be
w and arguing that w − 0.985w = 600− (0.99)(600).

Comments. 1. Surprisingly many people get the wrong answer. It is tempting to
pick up the calculator and start to multiply, or divide, or whatever. In this problem,
as in many others, the right approach involves looking at what doesn’t change—in
mathematical jargon, what remains invariant. Here the amount of “dry” pumpkin
matter remains invariant.

2. The human body is also largely water, and one can achieve remarkable, al-
beit temporary, weight loss by losing water. Boxers and wrestlers have long used
dehydration to go down in weight class, with sometimes fatal consequences.

One way to get temporarily dehydrated is to eat little for a few days, and/or
to eat mainly protein. But the body soon adjusts, and dieters, after losing seven
pounds in the first week of the miracle diet, find that in the second week their
weight doesn’t go down further, and may even go up.

I-23. American driving guidelines recommend that the distance between
your front bumper and the car in front of you should be at least one car
length for every 10 miles per hour of speed. Assume that drivers follow this
recommendation. If the speed limit on a freeway is reduced from 65 miles
per hour to 55 miles per hour, by what percentage is the carrying capacity
reduced?

Solution. Assume that all cars go at exactly the speed limit. That’s false, but even
simple models can yield useful knowledge, serving as points of departure toward
more sophisticated models. Assume also that all cars have the same length—this
is in fact not needed.

Let the (average) length of a car be Lmiles. At 65 miles per hour, a car occupies
its own length L, together with a distance of at least 65L/10 to the rear bumper
of the car in front. So if the freeway is being used to capacity, the elapsed time
between a car passing a certain point and the next car doing so is 7.5L/65 hours.
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Thus the capacity of any lane is 65/(7.5L) cars per hour. Similarly, capacity is
55/(6.5L) at 55 miles per hour. Capacity is thus reduced by the factor

65/(7.5L)− 55/(6.5L)

65/(7.5L)
,

a bit under 2.4%, not as much as one might guess—after all, speeds have gone down
by more than 15%.

Comment. We used a simple deterministic model. A good deal of sophisticated
mathematics has gone into producing and analyzing probabilistic models. Related
questions come up when we study the carrying capacity of telephone networks,
internet service providers, and even supermarket checkout lines. Studies indicate
that, because the accident rate tends to go up as speeds increase, and an accident
can cause massive delays, the average carrying capacity of a freeway may well
increase if the speed limit is lowered!

I-24. Canadian driver handbooks recommend the “two-second rule,” which
says that the distance between your front bumper and the next car should be
at least equal to the distance travelled in two seconds at current speed. (a)
Change the two-second rule to read that the distance between front bumpers

should be at least two seconds. Assume that drivers always obey this rule,
and always drive at the speed limit. How is the carrying capacity of a lane
affected if the speed limit is lowered from 100 km per hour to 90 km per
hour? (b) How is the carrying capacity affected under the real two-second
rule? Assume that cars are 4.5 meters long.

Solution. (a) Under the modified two-second rule, when the lane is used to capacity
2 seconds go by from the time that the front of a car passes a certain point to when
the front of the next car does. So the capacity—how many cars pass the point in
an hour—is independent of speed until cars form a continuous ribbon of metal.

(b) Let the speed limit be v. At capacity, the space between front bumpers is the
length 0.0045 of a car plus the “two-second” gap 2v/3600. In each lane,

v

0.0045 + 2v/3600

cars pass a given point per hour. When v = 100, this is about 1665. When v = 90,
it is about 1651. Carrying capacity has decreased by about 0.8%.

I-25. Alfred and Betty did an endurance run, circling a 400 meter oval
track 125 times. They started at the same time and place, and each ran
at constant speed. Alfred took 2 minutes per lap, and Betty took 1 minute
and 50 seconds. How many times after the start did Betty pass Alfred?
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Solution. Alfred runs at 1/120 laps per second, while Betty runs at 1/110 laps per
second, so their relative speed is (1/110−1/120), that is, 1/1320. Thus Betty gains
a lap every 1320 seconds. It took Betty 125 · 110 seconds to finish the run. Since
(125 · 110)/1320 is about 10.4, Betty passed Alfred 10 times.

Another way: Betty covers 12 laps in the time it takes Alfred to do 11. Thus she
passes him every 12 laps. Since 125/12 lies between 10 and 11, she passed him 10
times.

I-26. If Alphonse and Beth work together, they can paint a room in 9 hours.
If Beth and Gamal work together, it takes them 10 hours, while Alphonse
and Gamal working together take 15 hours. How many hours does it take
for Alphonse, Beth, and Gamal working together to paint 5 rooms?

Solution. Let α, β, and γ be the rates (in rooms per hour) at which Alphonse,
Beth, and Gamal work. So the rate at which Alphonse and Beth work in tandem
is α+ β. We obtain similar expressions for the other combined rates. Thus

α+ β =
1

9
; β + γ =

1

10
; α+ γ =

1

15
.

Add up, divide by two. We find that α + β + γ = 5/36, and therefore it takes 36
hours to paint 5 rooms.

I-27. I am twice the age that you were when I was your age. When you get
to be my age our ages will total 761

2 years. How old am I?

Solution. Let “my” age be x, and “your” age be y. Clearly x > y. I was y years
old x − y years ago. At that time your age was y − (x − y), and I am now twice
that old, so x = 2(2y − x), that is, 3x = 4y.

In x − y years, you will reach my (current) age x, I will be x + (x − y), and
these two numbers add up to 76.5, so 3x − y = 76.5. Since 3x = 4y, we conclude
that y = 25.5 and x = 34.

Comment. There are endlessly many age problems in the puzzle literature. Stu-
dents are sometimes encouraged to solve them by “guess and test.” That’s a largely
pointless activity unless there is a real-world need for the ability to find small integer
answers to artificial problems.

The wording in age problems is often intended to confuse. For that reason,
the discipline involved in setting up variables and equations is useful even if more
informal solutions are possible.

I-28. Andrew bought a new watch at five o’clock one afternoon, and the
salesperson set it to exactly the right time. But the watch was defective,
losing 3 seconds every hour. He only noticed about a week later, when
he arrived—he thought—just in time for a meeting and was told he was 8
minutes late. At what time of the day was the meeting scheduled to start?
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Solution. Interpret losing 3 seconds per hour to mean that when 1 real hour elapses,
the watch claims that the elapsed time is 1 hour minus 3 seconds (there are other
interpretations).

For clarity, we use algebraic notation. Let T be the number of true hours
between the time the watch was bought and the time the meeting was called for. At
the time the meeting started, Andrew thought that T (1−3/3600) hours had elapsed.
So he waited, by his watch, another 3T/3600 hours. That’s (3T/3600)/(1−3/3600)
true hours, which turned out to be 8 minutes. Solve for T . We find that T is 6 days,
15 hours, and 52 minutes, so the meeting was called for 8:52 in the morning.

I-29. Sara’s investment portfolio is made up of tech shares and gold mining
shares. Last year, the value of her tech shares went up by 10%, and the
value of her gold mining shares went down from $10,000 to $9,000. Overall,
the total value of her investments went up by 6%. Find the value of her tech
shares at the end of last year.

Solution. Calculation is marginally simpler if we let x be the value of the tech
shares at the beginning of last year. The total value of the investments at that time
was x+ 10000.

After one year, the tech investment had grown to x(1.10), so the total stock
value was x(1.10) + 9000. That represents 6% growth, and therefore

x(1.10) + 9000 = (x + 10000)(1.06).

Simplify and solve: x = 40000. At the end of last year, the tech stock was worth
40000(1.10), that is, $44,000.

I-30. Three merchants find a treasure. The first says “If I take this treasure,
I will be twice as rich as the two of you together.” The second says, “If I take
it, I will be three times as rich as the two of you together,” and the third
says “If I take it, I will become five times as rich as the two of you together.”
How large is the treasure, and how large the fortune of each merchant?

Solution. Let x, y, and z be the fortunes of the three merchants, and a the size of
the treasure. The words of the merchants translate to the equations

a+ x = 2(y + z); a+ y = 3(x+ z); a+ z = 5(x+ y).

We can solve by systematic elimination or by a trick. Let t = x + y + z. Add 2x
to both sides of the first equation: we get a+ 3x = 2t. Similarly, a+ 4y = 3t and
a + 6z = 5t. Multiply both sides of the first of these three equations by 4, both
sides of the second by 3, and of the third by 2, and add. We get 9a = 15t. Finally,
solve for x, y, and z in terms of a. The result is x = a/15, y = 3a/15, z = 5a/15.

We can do no better: ratios are determined, but actual money amounts are
not. The smallest solution in integers is x = 1, y = 3, z = 5, and a = 15.
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Comment. The problem comes from Mahāv̄ıra, a ninth-century mathematician and
astronomer. A version that has two persons but very similar wording can be found
in Chuquet’s Triparty (1484). There are many variants in the puzzle literature.
The earliest known example, attributed, probably wrongly, to Euclid, has a donkey
and a mule comparing their loads.

I-31. Alicia started up the Grouse Grind at 4:30. Fred and Janet started
30 minutes later. Janet passed Alicia at the halfway point, and Fred passed
Alicia 16 minutes afterwards. Janet got to the top 12 minutes before Fred.
Everyone climbs at unvarying speed. At what time did Alicia reach the top?

Solution. Alicia takes 30 minutes more than Janet to get to the halfway point, and
therefore 60 minutes more for the full hike. But Janet takes 12 minutes less than
Fred, so Alicia takes 48 minutes more than Fred.

Fred got to the halfway point 6 minutes after Janet did. When Fred caught up
to Alicia, she had climbed for 16 minutes beyond the halfway point while Fred had
climbed for 10. Thus Alicia’s Grind time is Fred’s time multiplied by 16/10. But
the difference between their times is 48 minutes, so six-tenths of Fred’s time is 48
minutes. It follows that Fred’s time is 80 minutes and Alicia’s is 128 minutes. She
arrived at 6:38.

Another way: What variables should we introduce? Maybe the speeds of the par-
ticipants. Or maybe (better) their Grind hike times. Let these be a, f , and j. We
are told that f − j = 12. Also, Janet takes 30 minutes less than Alicia to do half
the Grind, so a− j = 60.

Alicia’s speed is 1/a Grinds per minute, so when Fred gets to the halfway
point Alicia has a lead of 6/a. Their relative speeds are 1/f − 1/a, and therefore
(1/f − 1/a)(16) = 6/a. If we simplify, we get 16a = 10f . We now have three linear
equations in three unknowns, and the rest is easy.

Another way: The same ideas are illustrated in Figure 1.3. We compute exactly,
but in principle the picture can be drawn and an approximate answer obtained by
measuring. The horizontal axis represents time and the vertical axis distance. The

J F A

M
X
Y

S T

Figure 1.3: The Grouse Grind

point S represents the space-time position of Alicia at the start of her climb, and
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T is the space-time position of Fred and Janet when they started. The points J ,
F , and A represent the space-time positions of the three climbers at the end of
their climb, and M is the event “Janet passes Alicia.” Because M is midway in
vertical distance between S and A, the triangles MST and MAJ are congruent.
In particular, since the time between S and T is 30 minutes, so is the time between
J and A. We are given that JF = 12, so FA = 18.

The line segment MX is 1/2 of JF , so MX = 6. Since %MXY is similar
to %AFY , we conclude that the vertical distance between M and Y is 1/3 of the
vertical distance between Y and A, so the vertical distance between M and Y is 1/8
of the total Grind distance. It took Alicia 16 minutes to cover this, so the whole
Grind took her 128 minutes.

Comment. The first solution shows that it is possible to argue “rhetorically,” with-
out algebra. But that may require too much concentration. A nice thing about
algebra is that an equation, once written down, serves as a permanent written en-
capsulation of the idea that led to it, freeing up brain space for further thinking.

I-32. Alfonso borrowed $3000 from Beti at an interest rate of 8% com-
pounded annually. He paid part of what he owed a year later, the rest a
year after that. The second payment was twice as large as the first. What
was the first payment?

Solution. Let the first payment be P dollars. Just before the first payment, Al-
fonso’s debt had grown to $3000 plus (3000)(0.08) in interest, that is, to (3000)(1.08).
Just after the first payment, the debt was (3000)(1.08)− P . After one more year,
that debt had grown to [(3000)(1.08)− P ] (1.08), but was paid in full with the final
payment of 2P . We obtain the linear equation

[(3000)(1.08)− P ] (1.08) = 2P,

which yields P = (3000)(1.08)2/(1.08 + 2). To the nearest cent, the first payment
is $1136.10.

Comment. Many solvers use the calculator not only at the end, but repeatedly
during the solution process. In this question, they obtain the equation 3499.2 −
1.08P = 2P . That kind of on the fly calculation is sometimes a good idea. But it
can hide structural information: when we write 3499.2, its origins as (3000)(1.08)2

are no longer visible. And structural insight, a sensitivity to patterns, is often the
key to solving a problem.

I-33. Two hikers came out of the bush onto an East-West road. They needed
to go West, but were tired and decided to catch the bus. They argued about
which was closer, the first bus stop to the East or the first one to the West.
So Esther headed East at 6 km per hour, while Wesley headed West at 5 km
per hour. Esther got to the bus stop just in time to catch the bus. And
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Wesley got to her stop at the same time as the bus that Esther was on.
The bus travels at an average speed of 60 km per hour between stops. Who
walked further, Esther or Wesley?

Solution. Let te be the amount of time that Esther walked, and tw how long Wesley
walked. The sum of the distances they walked is 6te + 5tw. This is the distance
between the bus stops.

From the time that Esther caught the bus to the time it arrived at Wesley’s
stop, tw − te hours elapsed, and therefore the bus travelled a distance 60(tw − te).
Thus

6te + 5tw = 60(tw − te), so 6te = 5tw.

Esther and Wesley walked equal distances.

Comment. The equality is an “accident.” If the bus speed is 59, then Esther walked
the lesser distance. If it is 61 then Esther walked the greater distance. The actual
distances they walked can’t be found from the facts provided.

I-34. Cyclists A, B, and C are riding in a race in which they go 36 times
around a 1500 meter circuit. Cyclist A pedals at a steady 750 meters a
minute, B at 875 meters a minute, and C at 925 meters a minute. They
start together. (a) When will A and B first be together again? (b) When
will A, B, and C all be together again?

Solution. (a) Cyclist B gains 125 meters every minute, so she gains 1500 meters,
that is, one whole circuit, every 12 minutes.

(b) We saw that A and B are together every 12 minutes. A similar calculation
shows that B and C are together every 30 minutes. Is there a time t > 0 when they
are all together? Such a t must be simultaneously an integer multiple of 12 and an
integer multiple of 30.

The least common multiple of 12 and 30 is 60, so it looks as if the answer is
60 minutes. Not quite. Cyclist C takes about 58.38 minutes to complete the 36
circuits—at the 60 minute mark she is no longer on the track.

Comment. The cyclist question is less frivolous than it looks. The Sun, the Moon,
and the planets display various forms of cyclic behaviour as they travel through
the sky. In trying to understand eclipses and other conjunctions, astronomers and
astrologers in the Near East, India, and China contributed significantly to the
development of mathematics.

I-35. Four jewellers possess respectively 8 rubies, 10 sapphires, 100 pearls,
and 5 diamonds. Each gives one of his own stones to each of the others as
a token of regard. After that, they all possess stock of exactly the same
value. Find the relative prices of rubies, sapphires, pearls, and diamonds
(Bhāskara, 1150).
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Solution. Let r be the value of a ruby, s the value of a sapphire, and so on. We
are tacitly asked to assume that all the stones of the same type have the same
value—unlikely, but so are the actions of the jewellers.

After the exchange of gifts, the person who owned rubies has stock of value
5r+ s+ p+ d, the one who owned sapphires has stock of value r+ 7s+ p+ d, and
so on. These values are all equal, so

5r + s+ p+ d = r + 7s+ p+ d = r + s+ 97p+ d = r + s+ p+ 2d.

A quick way to solve this system is to subtract r+ s+ p+ d from each expression,
obtaining 4r = 6s = 96p = d. A ruby is therefore worth 24 pearls, a sapphire 16
pearls, and a diamond 96 pearls.

Another way: Imagine that each jeweller also gave a gift to himself. Each now has
four gift stones, together with what is left of his initial stock. These leftovers must
then all have equal value, and therefore 4 rubies are equivalent to 6 sapphires, to
96 pearls, to 1 diamond. Note that this solution is fundamentally the same as the
algebraic one—when we concentrate on the “leftovers,” we are in effect subtracting
r + s+ p+ d.

Comment. In the Bakhshāl̄ı manuscript (200?) three merchants possess respec-
tively 7 asavas, 9 hayas, and 10 camels. Each gives to each of the others two of his
animals. All three are then equally well-off. We are asked to compare the relative
values of the three kinds of animal.

I-36. A water tank has a flat bottom and vertical sides. The floor area of
the tank is 5000 cm2, and there is water in the tank to a depth of 20 cm. A
cubical concrete block with sides 25 cm is placed on the floor of the tank.
(a) By how much does the water level rise? (b) A second identical block is
then placed on the floor of the tank. How deep is the water now?

Solution. Figure 1.4 indicates what will happen, but to show these sketches are
roughly correct requires calculation. (a) There are 100000 cm3 of water in the tank.

Figure 1.4: The Level of the Water

Imagine first that the concrete block has base 25 cm by 25 cm, but is quite tall. The
available area of bottom is 4375 cm2, and therefore the depth of water would be
100000/4375, roughly 22.857 cm. That’s not high enough to cover the actual block,
so the water level rises by about 2.857 cm.
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(b) This time the blocks are submerged, since the water level clearly rises by more
than 2.857 cm. Together, the blocks have volume 2×253 cubic centimeters. Imagine
that the blocks are made of water. Then the total amount of “water” in the tank
is 131250. So the depth of the water is 131250/5000, that is, 26.25.

Comment. This problem, with different numbers, comes from Henry Dudeney’s
536 Puzzles & Curious Problems.

Here is a harder variant. Put into the tank a concrete block that has a 25× 25
square base and has the property that vertical cross-sections perpendicular to one
of the edges of the base are all isosceles triangles of height 25—the block looks like
an A-frame tent. How much does the water level rise?

Or else use a concrete Egyptian-style pyramid with base 25× 25 and height 25.
We end up having to solve a cubic equation. That can be done, to excellent accuracy,
with the Solve key that can be found on the more sophisticated calculators, or more
crudely by graphing.

I-37. Only 20% of the light gets through a one-quarter centimeter layer of
tinted glass. How much does a three-sixteenth centimeter layer of the same
kind of glass let through? Assume that when light strikes glass of given
thickness, an amount proportional to the intensity gets through, and none
is reflected.

Solution. Imagine light of intensity I falling on a pane of glass 1/16 cm thick. Then
pI gets through, for a certain number p. Put two of the panes together, making
a 1/8 cm pane. The amount of light that gets through is p(pI), that is, p2I. For
example, if a 1/16 cm pane lets 70% through, then the second pane attenuates the
light by another 30%, so 49% of the light gets through the two panes.

An amount p3I gets through three panes, and p4I gets through four—that is,
through a layer 1/4 cm thick. We know that p4 = 0.20, and want to calculate p3.
Since p = (0.20)1/4, it follows that p3 = (0.20)3/4. Now that we know the answer,
it is time to use the calculator: approximately 30% of the light gets through.

I-38. The Fahrenheit scale of temperature calls the freezing point of water
32◦, and the boiling point 212◦. Celsius suggested dividing the interval
between boiling point and freezing point into 100 equal parts. Not many
people know that Celsius chose 0 as the boiling point of water, and 100 the
freezing point! After a few years he changed his mind.

Call the initial suggestion of Celsius the old Celsius scale. What tem-
perature is the same under the old Celsius scale and the new Celsius scale?
What temperature is the same under the Fahrenheit scale and the old Cel-
sius scale?

Solution. The answer to the first question is clearly 50. We answer the second
question by producing a formula for converting Fahrenheit temperatures to old
Celsius. Because the (new) Celsius scale is familiar, we convert first to new Celsius.
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There are 100◦ Celsius between freezing point and boiling point, and 180circ

Fahrenheit. The Fahrenheit temperature x is x − 32 degrees Fahrenheit “above”
freezing (x−32 can be negative) and therefore the temperature is (x−32)(100/180)
degrees Celsius. It follows that the old Celsius temperature that corresponds to x
degrees Fahrenheit is C(x), where

C(x) = 100−
(100)(x− 32)

180
.

Set C(x) = x to find the temperature that is the same in both scales, simplify and
solve. We get x = 530/7, about 75.7.

Another way: The problem can be solved graphically. In Figure 1.5, Fahrenheit
temperatures are measured along the x-axis, old Celsius temperatures along the
y-axis, and the scales on the two axes are the same. Draw the line that joins the
point (32, 100) to the point (212, 0). This line has equation y = C(x), where C(x)
is the old Celsius temperature that corresponds to the Fahrenheit temperature x.
We want to solve the equation C(x) = x. To do this graphically, just draw the

100

32 212

Figure 1.5: The Old Celsius Scale

dashed line y = x, and read off where it meets the line y = C(x).

Comment. In the days before calculators, engineers had elaborate graphical ways
of solving problems by joining points on carefully printed scales. The technique
was called nomography.

I-39. You are doing your usual long morning commute on the freeway, which
has three lanes in each direction. Traffic is moving steadily but slowly, at
20 km per hour. The radio says that traffic is bumper to bumper all the way
to downtown. Then you see a sign saying that the left lane is closed for the
next 6 km. There is no exit or entrance for a long way. How long can you
expect to spend in the two-lane stretch?

Solution. Let L be the average distance between the front of a car and the front of
the car behind it. On the three lane stretch, traffic is flowing at (3 · 20)/L cars per
hour. Let v be the speed on the two lane stretch. Assume, perhaps wrongly, that
the average distance between cars is still L. Then traffic on that stretch is flowing
at 2v/L cars per hour.
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Traffic is bumper to bumper for a long way, so we are in a steady state situation.
Thus the flow rate through the three-lane stretch is the same as the flow rate
through the two-lane stretch. It follows that 60/L = 2v/L, that is, v = 30. The
6 km two-lane stretch should take about 12 minutes.

Comment. It is tempting to guess that traffic moves more slowly on the two-lane
stretch. To see that this isn’t true, recall that where a stream narrows, the water
flows more quickly.

We assumed that the average space between cars on the two-lane stretch is the
same as on the three-lane stretch despite the fact that speeds are higher. That may
be reasonable at the very low speeds involved here, and the radio did say “bumper
to bumper.”

It is instructive to solve the problem under the assumption that drivers obey
the American guidelines of one car length for every 10 miles per hour. The answer
is dramatically different! This new model is good for situations in which beyond
the narrowing there is uncongested highway.

I-40. Assume that the force of gravity on the Moon is one-sixth of the force
on Earth. High jumper J can, on Earth, clear a bar set at 2.06 meters.
What height can J clear on the Moon? J’s standing center of mass is 1.1
meters off the ground. J can clear the bar in such a way that J’s center of
mass passes 0.05 meters under the bar.

Solution. Assume that J generates the same take-off energy in both places, and
that this energy is used to raise the center of mass a suitable amount. On Earth,
the center of mass was raised by (2.06 − 0.05 − 1.1) meters. On the Moon, the
center of mass is raised by 6 times as much, namely 5.46. Add to this 1.1 for the
normal height of the center of mass, and 0.05 for the fact that the center of mass
passes under the bar. J should clear 6.61 meters.

Comment. The center of mass of a skilled high jumper or pole vaulter does pass
below the bar: by the time the mid-body clears the bar, head, arms, and shoulders
are well below the bar.

More and more mathematics is entering sports. Mathematical models have
been used to refine technique, to determine optimal batting order, and to design
sports equipment ranging from pole vault poles to racing boats.

I-41. A stone is dropped down a deep shaft. Five seconds later the sound
of the stone hitting bottom is heard. Assume that the stone falls a distance
gt2/2 meters in t seconds, where g = 9.8, and that the speed k of sound at
the ambient temperature is 346 meters per second. How deep is the shaft?
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Solution. Let d be the depth of the shaft, and t the travel time of the stone to
the bottom. That leaves leaves (5− t) seconds for the sound to travel back up. It
follows that k(5− t) = d = gt2/2. The quadratic formula yields

t =
−k +

√

k2 + 10gk

g

(the negative root was discarded). It turns out that t is about 4.688, and therefore
d is about 108 meters.

Comment. We sketch a method of successive approximation which for this problem
is harder, but gives a truer picture of informal mathematical thinking in the sciences.

The stone travels less than 5 seconds, so its terminal speed is less than 5g,
and its average speed is less than (5g)/2, which is about 24.5. Sound travels much
faster, so most of the 5 seconds are taken by the stone going down. More precisely,
the ratio r of the time for the stone to go down to the time for the sound to travel
up is greater than 346/24.5. It follows that the time for the sound to go up is less
than 5/(1 + r). Multiply this estimated time by 346. We conclude that the depth
of the well is less than 114.4 meters.

Using the standard formula s = gt2/2, we find that the time for a stone to drop
114.4 meters is about 4.832 seconds. So the stone’s average speed was actually
less than (4.832)(9.8)/2, which is about 23.676. That means that the ratio r of
downward travel time to upward travel time is greater than 14.6. As in the preceding
paragraph, we conclude that the depth of the well is less than 110.8.

We can go through one or two more computational cycles, or decide that the
calculations are inherently inexact, in that for example they neglect air resistance,
so an answer of about 110 is reasonable.

I-42. Alan can split a cord of wood in eight and a half hours, and Allison can
do it in six. Alan started splitting, but got tired after a while. So Allison
took over, and finished splitting the cord 7 hours after Alan had started.
Who worked longer, Alan or Allison?

Solution. Suppose that Alan worked for t hours. When Alan stopped, he had split
t/8.5 cords. Then Allison worked for 7− t hours, and therefore split (7− t)/6 cords.

The total amount of wood split is 1, and therefore

t

8.5
+

7− t

6
= 1.

Simplify and solve: t = 3.4, so Allison worked a bit longer than Alan.

Another way: We computed too much: after all, we weren’t asked how long Allison
worked. Suppose Alan had worked for exactly half the time. Then the amount of
wood split would be 3.5/8.5+3.5/6. The calculator shows that this is about 0.995,
not quite a full cord. And things get worse if Alan works more than 3.5 hours. So
Allison must have worked longer.



CHAPTER 1. WORD PROBLEMS 27

I-43. Sarah was hiking up Grouse Mountain. She got 3/4 of the way up in
43 minutes and 12 seconds. She took just as long to do the first half as the
second half, and took a minute and 36 seconds more to do the third quarter
than the fourth quarter. How long did the entire hike take?

Solution. Suppose that the fourth quarter took x minutes. Then the second half
(and hence the first half) took x + (x + 1.6) minutes. The first three-quarters
therefore took 3x+3.2 minutes. But we know that took 43.2 minutes, and therefore
3x = 40. So the fourth quarter time was 13 minutes and 20 seconds. It follows that
the entire hike took 56 minutes and 32 seconds.

I-44. A return ticket on the Grouse Mountain Skyride costs $15. Some
people prefer to hike up and ride down. A ticket just to go down costs only
$5. Last Saturday, Skyride receipts were $16250. On Sunday, twice as many
people hiked up and rode down than on Saturday, and 160 more people took
the Skyride both ways than on Saturday. Total receipts were $19500. How
many people hiked up and rode down on Saturday?

Solution. Suppose that a people rode both ways on Saturday, and that b people
rode down only. Then 15a + 5b = 16250. The Sunday results tell us that 15(a +
160) + 10b = 19500. Solve: b = 170.

I-45. With the cold water tap and the hot water tap both turned full on,
it takes 4 minutes to fill a sink. If the cold water is full on and the hot is
off, it takes 2 minutes less to fill the sink than if the cold water is off and
the hot is full on. How long does it take to fill the sink from the hot water
tap alone? Assume that the cold and hot water flow rates are independent
of each other (that is roughly true in an apartment building).

Solution. Let t be the time it takes for the hot water tap alone to fill the sink.
Then the time for the cold water alone is t − 2. The rates of flow of the two taps
are, respectively, 1/t and 1/(t− 2) sinkfuls per minute.

If the taps are both on, their combined rate is the sum of the individual rates.
We were told that the combined rate is 1/4, and therefore

1

t
+

1

t− 2
=

1

4
.

Since t can’t be 0 or 2, we get an equivalent equation by multiplying both sides
by 4t(t − 2). After simplifying, we obtain t2 − 10t + 8 = 0. The solutions are
t = 5 ±

√
17. The smaller root is not sensible, for it is less than 1, meaning that

the cold water tap fills the sink in negative time!

I-46. On an airless planet far far away, the local Galileo tried to drop an
apple and a feather simultaneously from a 100 meter tower. But Galileo’s
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timing was off, and the feather had already travelled 1 centimeter when
she dropped the apple. How far above the feather was the apple when the
feather hit the ground? Under constant acceleration a, an object initially
at rest is moving at speed at when time t has elapsed, and has travelled
distance at2/2.

Solution. Let T be how long the feather takes to reach the ground. Then aT 2/2 =
100, where a is the local gravitational acceleration. Suppose that when the apple
is released, the feather has been travelling for time t. During this time, the feather
travelled from rest through a distance of 0.01 meters, and therefore at2/2 = 0.01.

The gap between feather and apple when the feather hits the ground is aT 2/2−
a(T − t)2/2. Now calculate. Everything could be done on a simple calculator if we
knew a, but we don’t. We could hope that since the acceleration due to gravity
was not supplied, the answer is independent of a. But we can’t assume that, so it
looks as if we will have to carry a along.

Actually, we don’t have to carry a. For the only information we have been given
is a couple of lengths, and the question asks for another length, so we are free to
choose the unit of time however we like. Choose it so that a = 2.

Then T 2 = 100, and t2 = 0.01. The required distance is T 2 − (T − t)2, that is,
t(2T − t). Thus the distance between feather and apple when the feather hits the
ground is 1.99 meters.

Comment. Most students know the formula s = at2/2, but do not know why it is
true. We give a justification that reproduces in a continuous setting the usual trick
for adding up numbers in arithmetic progression. This explanation was inspired by
a movie chase scene on top of a train.

A long train has a flat top. The train is initially at rest, and travels with
constant acceleration a, from time 0 to time t. So at the end the velocity is at. On
top of the train is a car, which travels at initial velocity at, and constant acceleration
−a, both relative to the train.

The car has 0 acceleration relative to the ground, so it travels at constant speed
at relative to the ground. In time t, the car travels a distance at2 relative to the
ground. By symmetry, the train moves half that distance relative to the ground.

I-47. A stroboscopic light produces very brief flashes 21 times a second. A
dark turntable with a reflective spot on its edge is spinning at 2400 revo-
lutions per minute. The sole illumination in the room is provided by the
strobe. At what rate does the spot appear to rotate?

Solution. The turntable spins at 40 revolutions per second, say clockwise. In the
interval between flashes, the turntable goes through 40/21 revolutions, that is, 2/21
revolutions short of 2 full revolutions. The brain interprets this to mean (more
colloquially, it looks as if) the reflective spot has moved through 2/21 revolutions
counterclockwise. That apparent motion took 1/21 seconds, so the apparent number
of revolutions per second is (2/21)/(1/21), and the spot appears to rotate at 120
revolutions per minute in a direction opposite to the real spin.
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Comment. The same phenomenon can be seen in movies, which are simply rapid
sequences of still images. If a wagon wheel is rotating at suitable speeds relative
to the frame rate, the wheel appears to rotate backward while the wagon moves
forward. Sometimes the wheel even appears nearly to stand still, with a small
wobble.

I-48. A and B were walking together from A’s house to B’s house, and were
30% of the way to B’s house when they turned around and saw in the far
distance a vicious dog pursuing them.

A ran back toward her house at 12 km per hour, while B ran toward her

house at 12 km per hour. A reached safety just in time. So the dog kept
running, and reached B’s house precisely when B did. How fast is the dog?

Solution. Let s be the dog’s running speed, and h the distance between A’s house
and B’s house. Let d be the distance that the dog is from A’s house when A and
B first see it.

The dog reaches A’s house in time d/s, while A reaches it in time (0.30)h/12.
We obtain the equation d/s = (0.30)h/12. A similar calculation for B gives (d +
h)/s = (0.70)h/12. Subtract and simplify. It turns out that s = 30.

Another way: We can solve the problem without algebra. The dog and A reached
A’s house at the same time. Since A and B run at the same speed, B was already
60% of the way home when the dog got to A’s house. And while the dog ran from
A’s house to B’s, B covered the remaining 40% of the distance between the two
houses. Thus B’s speed is 40% of the dog’s speed, and therefore the dog runs at
12/(0.4) kilometers per hour.

Another way: Use the space-time Figure 1.6. The horizontal axis represents time
and the vertical axis represents space. Let S be the space-time event “A and B saw

A

B

O

S

X

Y

Figure 1.6: The Vicious Dog

the dog,” A be the event “A reached home” and B the event “B reached home.”
The dashed line represents part of the space-time path of the dog.

Because A and B run at the same speed, ∠SAO = ∠SBY . It follows that
%SAO is similar to %SBY . Since OS is 30% of OY , we conclude that Y B/OA =
70/30, and therefore AX = (40/30)(OA). But XB/OS = 100/30, and therefore
XB = (100/30)(OS). Thus XB/AX , the slope of AB, is (100/40)(OS/OA).
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Since OS/OA is the speed of A, we conclude that XB/AX , the speed of the
dog, is (100/40)(12).



Chapter 2

Counting

Introduction

The basic theme here is counting through systematic listing—so in theory
at least we make a complete list, and then count. Sometimes the numbers
involved are so small that careful counting is enough, though being organized
always helps. But the numbers are often either large or or unspecified (“n”).
An explicit list is then not possible, but still systematic structured lists must
be imagined and then counted.

Most of these problems are not technically difficult—once we know how
to do them! But it can be hard to reach the insight that makes the problem
fall apart. And sometimes minor-seeming changes of wording can turn a
simple problem into a difficult one. But it is almost always possible to make
progress through experimentation. If the numbers involved are too large for
that, we can work with smaller numbers: after a while, patterns magically
appear, and everything becomes clear.

We will often use the Multiplication Principle: If task A can be done
in a different ways, and for every one of these ways task B can be done in
b ways, then there are a × b ways of doing task A followed by B. We also
need to know how many ways there are of selecting r objects, where order of
selection doesn’t matter, from a collection of n distinct objects. Calculators
and school textbooks denote this number by nCr, or occasionally C(n, r).
Most mathematicians use the symbol

(n
r

)

, whose English pronunciation is
“n choose r.” It will be necessary to know that

(

n

r

)

=
n!

r!(n− r)!
=

n(n− 1) · · · (n− r + 1)

r!
.

“Closed form” expressions are stressed in the schools. Here and in the

31
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Sequences chapter we also pay attention to recurrence formulas, though
admittedly mainly as a way to reach closed form formulas. With the advent
of high speed computing, recurrence formulas are of increasing importance.

Problems and Solutions

II-1. Let P be a regular n-sided polygon. Call a triangle good if all its
vertices are vertices of P but none of its sides is a side of P. How many
good triangles are there?

Solution. Begin by playing with small n. If n = 3, 4, or 5, there are no good
triangles. If n = 6 there are 2 good triangles. If n = 7 there are 7 good triangles—
already here care is needed. So let’s tackle the general case! Let n ≥ 6.

We can choose 3 vertices of P in
(

n
3

)

ways. Some of these choices lead to bad
triangles, that is, triangles that have one or more edge in common with P .

There are two kinds of bad triangle: very bad (two edges in common with P)
and somewhat bad (one edge in common with P). The two edges a very bad triangle
shares with P meet in a point. Once this point is chosen, the triangle is determined,
so there are n very bad triangles.

Now count the somewhat bad triangles. Such a triangle has two neighbouring
vertices and an isolated one A. There are n ways to choose A. The first vertex that
we meet as we travel counterclockwise from A can be in any one of n−4 places. The
third vertex is then determined. Thus there are n(n− 4) somewhat bad triangles,
so the number of good triangles is

(

n

3

)

− n− n(n− 4)

which simplifies to n(n− 4)(n− 5)/6.

Another way: To make a good triangle, choose a vertex A (n ways) and colour it
blue. Call any vertex other than A and its two neighbours safe.

Choose the remaining two vertices from the n − 3 safe points. Of the
(

n−3
2

)

ways to do this, n− 4 choices give neighbouring pairs and must be removed. Thus
there are n

(

n−3
2

)

−n(n−4) good triangles with one vertex coloured blue. Calculate:

the number turns out to be
(

n−4
2

)

.
Any triangle gives rise to exactly three triangles with one vertex coloured blue.

So to find the number of triangles divide n
(

n−4
2

)

by 3.

Comment. We can see directly that there are n
(

n−4
2

)

triangles with one blue vertex.
After picking the blue vertex A, choose two edges from the n− 4 that join safe ver-
tices and colour them red. Let B be the first red point as we travel counterclockwise
from A, and C the first as we travel clockwise.

There are many ways to count, and it is all too easy to make a mistake. The
first approach was probably the safest. Counting in two different ways serves as a
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partial check. And we should almost always check any general result against actual
careful counts for small n.

II-2. A rectangle is divided into 24 small rectangles by drawing 3 lines
parallel to its base and 5 lines perpendicular to its base. Find the total

number of rectangles of all sizes.

Solution. Since the numbers aren’t large, we can and should count directly. Draw a
picture like Figure 2.1. Note that in the picture the 24 little rectangles are squares.
The problem didn’t even specify that lines are equally-spaced, but the spacing
doesn’t affect the count, and the picture might as well look nice. For now pay no
special attention to the two thicker lines.

It is natural to organize the count by rectangle size. Start with “large” ones—
there are fewer of them. There is 1 six by four rectangle, 2 six by three, 3 six by
two, and 4 six by one. Continue by counting the five by four, the five by three, and
so on.

We show how to figure out for example the number of four by three rectangles
(width four, height three). Start with a four by three wedged into the Northeast
corner of the rectangle, and see what freedom of movement it has: 0, 1, or 2 units
to the West and/or 0, 1 or two units South, for a total of 3 · 2 possibilities.

Another way of putting it is that a four by three is completely determined once
we specify its Southwest corner. And the Southwest corner of a four by three has
to lie in the Southwest rectangle determined by the two thick lines in Figure 2.1.
The picture shows that there are 3 · 2 choices for that Southwest corner. After a

Figure 2.1: Counting Rectangles

while we get that the total number of rectangles is

(1 + 2 + 3 + 4) + 2(1 + 2 + 3 + 4) + 3(1 + 2 + 3 + 4) + · · ·+ 6(1 + 2 + 3 + 4).

This number can be rewritten as (1+ 2+3+4)(1+ 2+3+4+ 5+6). It turns out
to be 210.

The idea generalizes. If (including the sides of the rectangle) there are m East–
West lines and n North–South lines, the count proceeds in exactly the same way,
with result

[1 + · · ·+ (m− 1)] + 2 [1 + · · ·+ (m− 1)] + · · ·+ (n− 1) [1 + · · ·+ (m− 1)] .

Another way: Instead of organizing the count by size, give it structure by counting
for each possible P the number of rectangles that have P as Southwest corner.
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Start with P the Southwest corner of the whole rectangle. Why start there? We
have a coordinate system in mind, and think of the Southwest corner as (0, 0).

To make a rectangle with Southwest corner P , we need to pick its Northeast
corner Q. A look at Figure 2.1 shows that there are 6 · 4 ways of picking Q.
Now move P one unit North. Why North? We are increasing the y-coordinate by
1. There are then 6 · 3 rectangles with P as Southeast corner. Go on like that,
systematically. We get a total of 6(4+3+2+1) rectangles whose Southwest corner
is on the y-axis.

Now start with P = (1, 0). There are 5 · 4 rectangles that have P as bottom
left corner. Move to (1, 1), then (1, 2), and so on. We get a total of 5(4+3+2+1)
rectangles with Southwest corner on the line x = 1. Continue.

Another way: We think the above approach is best, but there is a slicker way.
Suppose that when we include the sides of the rectangle there are m East–West
and n North–South lines. We produce the rectangles by choosing two East–West
lines and two North–South lines to form its boundary. The East–West lines can be
chosen in

(m
2

)

ways.Foreachsuchway, theNorth − −Southlinescanbechosenin
(n
2

)

ways. Thus there are
(m
2

)(n
2

)

rectangles. When m = 5 and n = 7 there are 210
rectangles.

II-3. In a chess tournament, every player plays every other player once.
The organizers had planned to invite every ranked player in the city, but
realized that would involve too many games. So they didn’t invite the 3
weakest ranked players, thereby saving a total of 45 games. How many did
they invite?

Solution. If k people play in a round robin tournament, then the number of games
is the number of ways of choosing 2 people from k, namely

(k
2

)

, that is, k(k− 1)/2.
Let n be the number who were actually invited. Then there are n + 3 ranked

players in the city. If they had all been invited, there would have been (n+ 3)(n+
2)/2 games. Only n were invited, so there were n(n− 1)/2 games. Since 45 games
were saved,

45 =
(n+ 3)(n+ 2)

2
−

n(n− 1)

2
= 3n+ 3,

and therefore n = 14.

Another way: We can do it with less machinery. Let n be the number actually
invited. If 3 more had been invited, the following additional games would have
been needed: (i) 3 games between the extra players and (ii) for each extra player, n
games with the players actually invited. Thus 3n+3 extra games would be needed,
and therefore 3n+ 3 = 45.

II-4. There are four judges at a wine tasting. Each judge assigns the wine a
mark from 1 to 10 and the marks are added together. In how many different
ways can a wine get a total score of 20? (The Albanian judge giving 9
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and the Bolivian 6 is not the same as 6 from the Albanian and 9 from the
Bolivian.)

Solution. Count first the number of ways of getting various total scores from two
judges, A and B. This is basically the same problem as counting the number of
ways of getting various sums when we toss two dice.

Write (a, b) to mean a from A and b from B. We list all the ways of getting, for
example, a sum of 6: (1, 5), (2, 4), (3, 3), (4, 2), and (5, 1). So there are 5 ways that
the sum can be 6. Similarly, we can see that if n is any number from 2 to 10, there
are n− 1 ways of getting a sum of n.

We could continue counting for n = 11 to n = 20. But note instead that

a+ b = n if and only if (10− a) + (10− b) = 20− n.

So there are just as many ways of getting a sum of 20− n as there are of getting a
sum of n, there is mirror symmetry across n = 10.

We now tackle the four judges problem, by thinking of the ways that the total
score can be 20. The scores of A and B can add up to 2 and the scores of C and D
to 18, or A and B can add up to 3 and C and D to 17, and so on. We summarize
the possibilities as (2; 18), (3; 17), . . . , (9; 11), (10; 10), (11; 9), . . . , (18; 2).

The pattern (2; 18) can happen in 1 · 1 ways, (3; 17) can happen in 2 · 2 ways,
and so on. So the total number of ways is

12 + 22 + · · ·+ 82 + 92 + 82 + · · ·+ 22 + 12.

Add up. There aren’t many numbers, so it is probably not worthwhile to develop
general theory, though it is worth noticing that 12+22+ · · ·+82 occurs twice. The
sum is 489.

Comment. The same analysis works if each judge assigns a mark from 1 to m and
we want to count the number of ways of getting a total score of 2m. The answer is

[

12 + · · ·+ (m− 2)2
]

+ (m− 1)2 +
[

(m− 2)2 + · · ·+ 12
]

.

Using the standard formula 12 + 22 + · · ·+ k2 = k(k+ 1)(2k+ 1)/6 (see VI-37) we
find that the number of ways is

(m− 1)(2m2 − 4m+ 3)

3
.

More generally, we can compute the number of ways to get total score s. The
results are particularly nice for s = 2m ± 1. We could also ask similar questions
about three judges.

II-5. A rectangle is split into 26 × 27 identical rectangles by drawing 25
lines parallel to a pair of sides, and 26 lines parallel to the other pair. Draw
a diagonal of the rectangle. How many of the small rectangles does it travel
through?
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Solution. We can draw a picture and then count. But even if, like Figure 2.2,
it is drawn with precise drawing software, the counting requires care. However,
by thinking, we can easily solve a more general problem. Choose as origin O the

Figure 2.2: The Number of Rectangles Crossed by a Diagonal

bottom left corner of the big rectangle, let the axes be along the two sides that
meet at O, and let P be the corner opposite to O. Let the rectangle have base a
and height b. We first show that the diagonal OP can only touch the corner of a
small rectangle at O and at P .

The coordinates of any cornerC of a small rectangle are of the shape (sa/26, tb/27)
where s ≤ 26, t ≤ 27 and s and t are integers. If C (= O and C is on the diagonal,
then OC has slope b/a. It follows that

b

a
=

tb/27

sa/26

and therefore 27s = 26t. But since 27 and 26 have no factor greater than 1 in
common, that forces s = 26 and t = 27, that is, C = P .

Now follow the diagonal as it travels upward. The diagonal enters a new small
rectangle every time it pierces a horizontal line or a vertical line, and it can’t
simultaneously pierce a horizontal and a vertical. So it must cross 26 + 25 lines.
Add in the small rectangle at the bottom left: 52 small rectangles are crossed.

Comment. Imagine colouring in red the rectangles that the diagonal traverses. The
red rectangles form a zig-zag path from the bottom left rectangle to the one at top
right. Think of the path as the travels of a chess King who can only move up or
to the right. The King must take a total of 25 steps to the right and 26 up (even
if he were allowed to stray from the diagonal), so he must have visited his starting
rectangle and 25 + 26 others.

The same argument shows that if we have m instead of 26, and n instead of
27, and m and n have no common factor greater than 1, then m+ n− 1 rectangles
are crossed by the diagonal. More generally, if d is the greatest common divisor
of m and n, then the number of rectangles crossed is d(m/d + n/d − 1), that is,
m+ n− d.

II-6. (a) Three runners compete in a 100 meter race. How many possible
orders of finish are there, if ties are allowed? (b) What about if there are
four runners?
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Solution. (a) Count first the orders of finish with no ties. The winner can be chosen
in 3 ways. For each of these ways, the second-place runner can be chosen in 2 ways.
Now the order of finish is fully determined, so there are 3 · 2 possibilities of this
type.

There is 1 three-way tie. There are 3 · 2 two-way ties, for the runner who won’t
be tied can be chosen in 3 ways, and for each choice there are 2 possible orders of
finish. There are therefore 13 possible orders of finish.

(b) Count first the orders of finish with no ties. Use the “multiplication principle”
twice. There are 4 · 3 ways to assign the first two places. For each of these, third
place can be assigned in 2 ways, giving (4 · 3) · 2) possible orders of finish.

There is 1 four-way dead heat. To count three-way ties, note that the three
runners can be chosen in

(

4
3

)

ways and for each choice there are 2 orders of finish,
tie for first or tie for last, for a total of 8.

Now count the ways that exactly two runners can finish tied. The tied runners
can be chosen in

(

4
2

)

ways, and for each choice there are 6 possible orders of finish
(tie the tied runners together, now three “people” are running), for a total of 36.

Finally, count the double ties. The pair who finish tied for first can be chosen
in
(

4
2

)

ways. Once this choice is made, everything is determined, so there are 6
possible double ties. (The double ties are the the easiest to get wrong.) Add up:
the total is 75.

II-7. How many ways are there to colour the faces of a cube using red,
white, blue, green, brown, and yellow paint, if the faces are to be of different
colours? (Two colourings are different if one can’t be obtained from the
other by a rotation of the cube.)

Solution. Imagine that the cube has been coloured and place it on a desk red face
down. There are 5 possibilities for the colour of the top face. We will count the
colourings that have red face down and, say, white face up and multiply the result
by 5.

Leaving red face down and white face up, rotate the cube so that the blue face
points toward you. Then the face to the right could be any one of 3 colours (green
, brown, or yellow), and for each such choice the face to the left could be any one
of 2 colours. Once the right and left colours are chosen, the colour of the back face
is determined. So there are 3 · 2 colourings with red at the bottom and white on
top, and therefore 30 colourings altogether.

II-8. Let X be one of the corners of a cube, and Y the corner diagonally
opposite to X. How many ways are there to walk from X to Y along the
edges of the cube without ever going through the same point twice?

Solution. Use the stylized cube of Figure 2.3 as a guide. The first step takes us to
A, B, or C. When we reach one of these 3 vertices, there are 2 choices for the next
vertex to visit. So the first two steps can be taken in 6 different ways. Up to now,
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A B C

PQR

X

Y

Figure 2.3: Walking the Cube

the situation is fully symmetric, so we count the paths that begin with XAR and
multiply the result by 6.

Given start XAR, we can finish with Y , BPY , or BPCQY , 3 ways only. Thus
there are 18 paths from X to Y .

II-9. A convex nonagon (9 sides) has the property that no point in the
interior of the 9-gon lies on three or more diagonals. How many intersection
points of diagonals lie in the interior of the 9-gon?

Solution. We could and should make a sketch. Maybe we could even use the sketch
to count. But if we draw all 27 diagonals the picture may be too messy to be useful.
There is also a theoretical difficulty: the question is about all convex 9-gons, and
it is not yet clear that the answer is independent of shape. The arguments that
follow are motivated by pictures but do not depend on them.

Call a diagonal a 1-diagonal if it joins vertices A and B that are close to each
other, in the sense that there is only one vertex between A and B. Similarly, we
can define 2-diagonal and 3-diagonal. The 9-gon has 9 each of these three kinds of
diagonal.

Look first at a 1-diagonal. It has 1 vertex on one side and 6 on the other. That
gives 1 · 6 diagonals that meet the given 1-diagonal inside the 9-gon, and therefore
6 intersection points.

Look now at a 2-diagonal. There are 2 vertices on one side, 5 on the other,
giving 2 ·5 intersection points. Similarly, each 3-diagonal produces 3 ·4 intersection
points.

So we obtain a total of 9(1 · 6+2 · 5+3 · 4) intersection points. Not quite! Note
that for any two diagonals !1 and !2 which intersect in the interior of the 9-gon,
the intersection point has been counted twice, once when we focus on !1 and again
when we focus on !2. So we need to divide by 2. The result is 126.

Another way: We solve the problem for all convex n-gons such that no three di-
agonals meet at a point. Colour four of the vertices of the n-gon blue. The blue
vertices determine a unique convex quadrilateral. If we draw all possible lines that
join blue vertices, we can see that they determine exactly one intersection point in
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the interior of the n-gon. Thus there are just as many interior intersection points
as there are ways of choosing four vertices, namely

(n
4

)

.

Comment. The first calculation also generalizes to n-gons, and yields an expression
for the number of internal intersection points. This expression must be equal to
(n
4

)

, so we obtain an interesting formula as a bonus for counting things in two ways.
And counting can be a tricky business. If we count in two different ways and get
the same answer, we get some reassurance that the answer is right.

II-10. There are 7 tickets in a box, with the numbers 1 to 7 written on them.
The tickets are taken out of the box one at a time. In how many different
ways can this be done if at any stage of the process the numbers already
taken out have to be a collection of consecutive integers? For example, one
of these ways is withdrawal in the order 4356271.

Solution. Imagine that as we take out the tickets in a permitted way, we place them
in their natural order. If, for example, we take them out in the order 4356271, we
obtain successively 4, 34, 345, 3456, 23456, 234567, 1234567.

Imagine running the videotape backwards: start with 1234567 and put the
tickets back into the box. So at any stage we must remove a ticket either from
the left end or the right end of the sequence. Any way of doing this is completely
specified by a word of length 6 made up of the letters L (for left) and/or R. There
are 26 such words.

II-11. How many numbers are there of the shape

±1± 2± 4± 8± 16± 32± 64± 128 ± 256± 512?

Solution. Let’s experiment with shorter sums. There are 2 numbers representable
as ±1. There are 4 numbers representable as ±1 ± 2. And there are 8 numbers
representable as ±1 ± 2 ± 4. It is natural to conjecture that 210 numbers can be
represented by using all the powers of 2 from 20 to 29 suitably decorated with plus
signs and/or minus signs.

There are 210 different ways of making a string of length 10 made up of the
“letters” −1 and 1. So in order to show that 210 numbers are representable, it is
enough to show that different strings produce different numbers. So suppose that

s0 + 2s1 + · · ·+ 512s9 = t0 + 2t1 + · · ·+ 512t9,

where the si and ti are each −1 or 1. Bring everything to one side. We get

2(u0 + 2u1 + 4u2 + · · ·+ 512u9) = 0

where each ui is −1, 0, or 1. Then each of the ui must be 0, meaning that the
strings are the same. For if they are not all 0, let uk be the first non-zero one.
Then the left-hand side is divisible by 2k+1 but by no higher power of 2, while the
right-hand side is divisible by every power of 2.
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Another way: There is a more concrete and therefore probably better approach.
The numbers ±1± 2 ± · · · ± 512 are odd and range from −1023 to 1023. We give
a recipe for expressing any of the 1024 odd numbers in this interval.

Any non-negative integer is a sum of distinct powers of 2 (possibly none). Just
keep taking away the largest possible power of 2 until there is nothing left. For
example, 355 = 256 + 99, but 99 = 64 + 35, 35 = 32 + 3 and 3 = 2 + 1 so
355 = 256 + 64 + 32 + 2 + 1.

If x has been expressed as a sum of distinct powers of 2 chosen from 1, 2, 4,
. . . , 512, then 1023− x is the sum of the powers of 2 that we didn’t use, so

x− (1023− x) = ±1± 2± 4± · · · ± 512

for some choice of plus and/or minus signs. So we only need to show that any
odd integer n between −1023 and 1023 can be expressed as 2x − 1023 for some x
between 0 and 1023. That’s easy: just let x = (n + 1023)/2. Since n is odd, x is
an integer, and as n ranges from −1023 to 1023, x ranges from 0 to 1023.

II-12. How many different numbers do we get by putting parentheses in the
following expression in all possible ways?

2÷ 3÷ 5÷ 7÷ 11÷ 13÷ 17 ÷ 19

Solution. Instead of working with specific numbers, we work with letters, starting
with three letters. Note that a÷ (b÷ c) simplifies to ac/b while (a÷ b)÷ c = a/bc.
So there are 2 possibilities.

Now look at a÷ b÷ c÷d. First form (a÷ b)÷ c÷d. By the three-term case, we
can insert further parentheses and make d end up “on top” or “below”. Note that
a will be on top, while b and c will be below. Start again and form a÷ (b÷ c)÷ d.
By the three-term case, we can insert further parentheses and make d end up on
top or below. Note that a and c will be on top, and b below.

In summary, a ends up on top and b below—that’s unavoidable—but c and d
can end up on top or below, together or apart, 4 possibilities in all.

For five terms, first form (a ÷ b) ÷ c ÷ d ÷ e, and insert further parentheses.
Note that c ends up below, but by the four-term case d and e can end up on top
or below, together or apart. Then form a÷ (b÷ c)÷ d÷ e. Again by the four-term
case, d and e can end up anywhere we like, and c ends up on top. In summary, a
ends up above and b below, that can’t be helped, but c, d, and e can end up on top
or below, in every conceivable combination, and there are 8 possibilities.

In exactly the same way, we can use the conclusion for the five-term case to
show that when there are six terms, the last four can end up on top or below, in
every conceivable combination, for a total of 24 possibilities. And the conclusion
for the six-term case produces in the same way an analysis of the seven-term case,
and so on.

If we start with n terms, there are 2n−2 possible results. The original question
had 8 terms. Because they are distinct primes, different simplified expressions
represent different numbers, so the answer is 64.
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Comment. It can be visually comforting to take logarithms. If we do that, we end
up putting parentheses in expressions of the form

a1 − a2 − a3 − · · ·− an.

The argument doesn’t really change, but subtraction is more familiar than division,
so things feel simpler.

II-13. Twenty people have entered a table tennis tournament. They are to
be divided into ten pairs to play in the first round. In how many ways can
this be done?

Solution. List the players, say alphabetically. Take the first player in the list, and
pair her off with one of the other players. That other player can be chosen in
19 ways. Take the first player who is still unpaired, pair her off with one of the
remaining players. That can be done in 17 ways. So the first two pairings can be
done in 19 · 17 ways. Take the first player who remains unpaired, pair her off with
. . . . We conclude the number of ways to do the pairing is

19 · 17 · 13 · · · · · 5 · 3 · 1.

(the final 1 is there to make things look nicer).

Another way: We pair up two people, then pair up two more, and so on. The first
pair can be chosen in

(20
2

)

ways. For each such pair, the second pair can be chosen

in
(18
2

)

ways, and so on. So it looks as if there are
(

20

2

)(

18

2

)(

16

2

)

· · ·
(

4

2

)(

2

2

)

ways to do the pairing. That’s not true. What we have just counted is the number
L of ways of pairing people up and lining up the pairs in a row. Let P be the
number of ways of pairing people up. For every way of pairing people up, there
are 10! ways of lining up the pairs in a row. We conclude that L = 10!P . So if
we take the (correct) expression for L obtained above and divide by 10!, we get P .
Simplify. There is a lot of cancellation, and we get 19 · 17 · · · · · 3 · 1.

II-14. Explain why in any group of 100 people there are at least two people
who have the same number of friends in the group. Assume that if B is a
friend of A, then A is a friend of B.

Solution. Suppose first that somebody, say Alphonse, has no friends. Then no one
has 99 friends, for no one likes Alphonse. Make boxes labelled 0, 1, 2, . . . , 98. Into
the box labelled k, put all people who have exactly k friends. There are 99 boxes
and 100 people, so some box contains 2 or more people, that is, there are at least
two people who have the same number of friends.

Suppose on the other hand that everyone in the group has at least 1 friend.
Make boxes labelled 1, 2, 3, . . . , 99, and put people into boxes as before. Again
there are 99 boxes but 100 people, so some box contains at least 2 people.
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Comment. The idea that we used is called the Dirichlet Box Principle, or the
Pigeonhole Principle. It has surprisingly many applications. For a more serious use
of the Dirichlet Box Principle, see IX-3.

II-15. A league has eight basketball teams, T1, T2, . . . , T8. This year, each
team met every other team twice. For i = 1, 2, . . . , 8 let ai be the number
of games that team Ti won, and bi the number of games it lost—there are
no draws. Explain why

a21 + a22 + · · · + a28 = b21 + b22 + · · · + b28.

Solution. To prove that two numbers are equal, it is enough to show that their
difference is 0. We will show that

(a21 − b21) + (a22 − b22) + · · ·+ (a28 − b28) = 0.

Every team played 14 games, so

a2i − b2i = (ai + bi)(ai − bi) = 14(ai − bi),

and therefore

(a21 − b21) + · · ·+ (a28 − b28) = 14 [(a1 − b1) + · · ·+ (a8 − b8)] .

But a1 + a2 + · · · + a8 = b1 + b2 + · · · + b8, since the total number of wins is the
same as the total number of losses. Thus

(a1 − b1) + (a2 − b2) + · · ·+ (a8 − b8) = 0,

and the result follows.

II-16. Let )x* denote the greatest integer which is less than or equal to x.
How many positive integers n below 11000 satisfy the equation

⌊ n

2000

⌋

−
⌊ n

2001

⌋

= 1?

Solution. The smallest solution is 2000, the next two are 4000 and 4001, followed
by 6000, 6001, 6002, and so on, for a total of 15 below 11000.

II-17. Math classes A and B have the same number of students. There are
boys and girls in each class. More students passed in class A than in class B.

Is it possible that a greater percentage of the boys in class B passed than
in class A, and also a greater percentage of the girls in class B passed than
in class A?
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Solution. It is possible! Here is an example. Class A has 2 boys and 28 girls; 1 boy
and 27 girls passed. Class B has 28 boys and 2 girls; 25 boys and both girls passed.

In A, 28 out of 30 passed, while in B only 27 out of 30 did, so A is ”better”
than B. But in B, 25 out of 28 boys passed, while in A only 50% of the boys did.
So B is better for boys. A similar calculation shows that B is also better for girls.

II-18. In how many different ways can we represent 7 as a sum of positive
integers, where the order of summation matters? For example, 1+ 3+2+1
is different from 2 + 3 + 1 + 1.

Solution. There aren’t many representations, and they can be counted by careful
listing. Work with numbers smaller than 7 to get started. The number 1 has 1
representation, while 2 has 2 of them, and 3 has 4 representations (3, 2 + 1, 1 + 2,
and 1 + 1 + 1). We can continue to experiment, finding that 4 has 8 representa-
tions. On the basis of this limited evidence, we might conjecture that n has 2n−1

representations.
Given a representation of n, we can get a representation of n+1 in two different

ways: (i) add 1 on the right and (ii) add 1 to the rightmost number in the repre-
sentation. For example, starting from the representation 1+ 3 of 4, by using (i) we
get the representation 1 + 3 + 1 of 5, while using (ii) we get 1 + 4.

All representations of n + 1 arise in this way, for (i) gives the representations
of n+ 1 that have a 1 at the right end, and (ii) gives the rest. So n+ 1 has twice
as many representations as n. It follows that 4 has 8 representations, 5 has 16, 6
has 32, and finally 7 has 64. In general, n has 2n−1 representations.

Another way: The next approach is less efficient, but maybe more natural. Let
f(k) be the number of representations of k. How many representations of n start
with 1? We get such a representation by following the 1 with any representation of
n− 1, so there are f(n− 1) representations of this type.

Similarly, f(n − 2) representations start with 2, f(n − 3) start with 3, and so
on up to f(1) that start with n − 1. And 1 representation of n has n all by itself.
We have proved the recurrence formula

f(n) = f(n− 1) + f(n− 2) + f(n− 3) + · · ·+ f(2) + f(1) + 1.

By direct listing, we saw that f(3) = 4, f(2) = 2, and f(1) = 1. Thus f(4) =
4 + 2 + 1 + 1 = 8, f(5) = 8 + 4 + 2 + 1 + 1 = 16, f(6) = 32, and f(7) = 64. The
recurrence formula can be used to prove that in general f(n) = 2n−1.

Another way: The following geometric idea is useful in a variety of problems.
Imagine seven x’s lined up in a row, like this:

x x x x x x x.

There are six “gaps” between x’s. Look at each gap in turn, and decide whether
or not to insert a separator. Once the separators are inserted, count the number
of x’s between gaps. So for example the pattern x|xxx|xx|x corresponds to the
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representation 7 = 1 + 3 + 2 + 1. There are just as many representations of 7 as a
sum as there are ways of placing separators.

At the first gap there are 2 choices—place a separator or don’t. For each such
choice, there are 2 choices at the second gap, so there are 2 · 2 ways to decide what
happens at the first two gaps. Go on in this way. We conclude that there are 26

different ways of placing the separators. The same argument shows that if order
matters then n can be expressed in 2n−1 ways as a sum of positive integers.

II-19. Find the sum of the three-digit numbers all of whose digits are odd.

Solution. Since there are 5 odd digits, there are 53 three-digit numbers all of whose
digits are odd. Listing them all and adding up is unappealing. Instead, we imagine
listing and adding.

There are 25 numbers in the list with last digit 1, 25 with last digit 3, and so
on. Thus the sum of all the last digits is 25(1+ 3+ · · ·+9), that is, 625. Similarly,
the sum of all the “tens” digits is 625, as is the sum of the “hundreds” digits. The
sum of all the numbers is therefore 625 + 625 · 10 + 625 · 100, that is, 69375.
Another way: The first number is 111 and the last is 999. Note that they add up
to 1110. So do 113 and 997. In general, let n be a three-digit number with odd
digits a, b, and c. Then the number with digits 10− a, 10− b, and 10− c also has
odd digits, and the sum of the two numbers is 1110.

Thus our numbers can be paired up so that numbers in each pair add up to
1110, with 555 as the only unpaired number. There are 62 pairs, and therefore the
sum is 62 · 1110 + 555. Alternately, the numbers have average value 555, so their
sum is 125 · 555.

II-20. Montreal and Toronto are playing in the baseball World Series. A
game can’t end in a tie, and the first team to win four games wins the Series.
How many different outcomes are possible? Here are a couple: MMMM
(Montreal won in four straight) and MMMTTM (Montreal won the first
three, Toronto came back to win two, but Montreal won the deciding sixth
game).

Solution. List and count the patterns in which Montreal wins the Series, then
multiply the result by 2.

There is 1 pattern in which Montreal wins four straight. For patterns in which
Montreal takes five games to win the Series, we need to produce all five-letter words,
made up of the letters M and T, that end in M and have exactly one T among the
first four letters. Start listing: TMMMM, MTMMM, . . . . Where the T goes can
be chosen in 4 ways, so there are 4 such words.

For the patterns in which Montreal wins in six, we must make a six-letter word
that ends in M and has two T’s among the first five letters. So we must choose
the location of the two T’s from the five available places. But 2 places can be
chosen from 5 in

(5
2

)

, namely 10 ways. Similarly, there are
(6
3

)

, namely 20 patterns
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in which Montreal wins in seven. The number of possible outcomes is therefore
2(1 + 4 + 10 + 20).

Another way: Again we count the patterns in which Montreal wins the Series and
double the result. Think of the seven scheduled game dates. We need to choose
four of these dates as Montreal wins. Once we have done that, the Series outcome
is determined. (The dates not chosen that come before the last chosen date are
Toronto wins. The other dates not chosen are games that were not played because
the Series was over.) We conclude that the number of ways Montreal can win the
Series is

(7
4

)

, namely 35, so there are 70 possible outcomes.

Comment. Which way is better? Perhaps the second way is too slick. Like power
steering, it deprives one of the feeling of driving. But looking at the problem in
two ways reassures us that the count is right, and also brings a nice bonus.

First, we generalize. The greedy owners and television networks have decided
that the first team to win n+1 games will win the Series. How many different ways
can Montreal win? If we count as in the first way, we get

(

n

0

)

+

(

n+ 1

1

)

+

(

n+ 2

2

)

+ · · ·+
(

2n

n

)

.

(we wrote
(n
0

)

instead of 1 to make things look nicer). If we count as in the second

way, we get

(

2n+ 1

n+ 1

)

. Since the two counts are equal, we obtain a pretty identity.

Counting things in two different ways can be a powerful technique.

II-21. An integer is “lucky” if its decimal representation has two or more
identical neighbouring digits. So 2337 is lucky, as is 11145, but 2464 is not
lucky. How many lucky numbers are there from 1000 to 9999 inclusive?

Solution. We could count the lucky numbers directly, but it is easier to count the
unlucky numbers. Let’s manufacture unlucky numbers by choosing their digits,
from left to right. The leftmost digit can be any digit from 1 to 9.

For each choice of leftmost digit, there are 9 ways of choosing the next digit,
since it can be any digit other than the leftmost one. Thus there are 92 ways of
choosing the first two digits. For each one of these 92 choices, there are 9 ways of
choosing the next digit, and so on. So there are 94 unlucky numbers. Our interval
contains 9000 numbers, and therefore there are 9000−94 lucky ones, that is, 2439.

II-22. A test consists of 10 multiple choice questions. On any question,
you get 5 points if you answer the question right, 0 points if you answer it
wrong, and 1 if you leave it blank. Find the smallest positive integer that
is impossible to get as a grade.

Solution. One approach is to start at 0, check whether it is a possible grade, then
check 1, 2, and so on until we bump into an impossible number. But we can save
some time.
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Suppose that we get q questions right, and leave b blank. Our grade on the test
is then 5q + b. Note that 0 ≤ b ≤ 10 − q. If q ≤ 6, then b can be as large as 4, so
every grade less than or equal to 6 ·5+4 can be achieved. It is also easy to produce
35, 36, 37, and 38. To get 39, we need q = 7. But then b ≤ 3, so 39 is impossible.

Comment. We can generalize slightly without much effort. Suppose that each
correct answer is worth a points, where a is an integer greater than 1. The rest of
the grading scheme doesn’t change, but there are k questions on the test. If n is a
positive integer, divide n by a, obtaining quotient q and remainder b. As long as
q ≤ k− (a− 1), we can achieve a mark of n by having q right, b blank, and the rest
wrong. If q = k − (a − 1) + 1, we run into trouble: there aren’t enough questions
to produce a remainder of a − 1. The smallest impossible grade turns out to be
ak − a2 + 3a− 1.

II-23. Every grade 11 student wrote three exams. Exactly 100 students got
an A on one or more exams. Exactly 60 got an A on two or more exams,
and 20 got an A on all three. How many A exams were written?

Solution. The students who got three A’s account for 3 ·20 A exams. The (60−20)
students who got two A’s account for 2·40 A exams. Finally, the (100−60) students
who got one A account for 1 · 40 A exams. Add up: we get 180.

There were 100 students with one or more A’s, 60 with two or more, and 20
with three. Note that 100+60+20 = 180. Is this a numerical coincidence? Repeat
the argument with letters instead of numbers. Suppose that p students got one or
more A’s, q got two or more, and r got three A’s. Then the r three A’s people
account for 3r A exams. The q − r people who got two A’s account for 2(q − r) A
exams. And finally the p − q people with one A account for p − q A exams. Add
up. We get p+ q + r. It wasn’t a coincidence!

Another way: We justify the “coincidence” not by algebra, but by combinatorial
thinking, by finding a better way to count the A exams. Imagine that the teacher
gives out a red star for every A exam, as follows. First she gives a star to everyone
who got at least one A. That’s 100 stars. Next she gives an additional star to
everyone who got two or more A’s. That accounts for 60 more stars. Finally she
gives an additional star to everyone who got three A’s. That accounts for 20 more
stars, so the total number of A’s is 100 + 60 + 20.

Comment. Both solutions generalize readily. If no more than n exams were written
by anyone, and p1 people got one or more A’s, p2 got two or more, p3 got three or
more, and so on, with pn getting exactly n A’s, then there are p1 + p2 + · · ·+ pn A
papers.

II-24. You have four attractive brass digits, two 4’s, one 5, and one 7. How
many different house numbers can you form by using some or all of these
digits?
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Solution. We should count in a systematic manner, so as not to miss anything.
There are 3 possible one-digit house numbers. What about two-digit numbers? If
we don’t repeat a digit, the first digit can be chosen in 3 ways, and for each such
way there are 2 ways of choosing the second digit, for a total of 6 numbers. Add
to that the house number 44 and we have 7.

Now count the three-digit numbers. There are 6 numbers with all digits differ-
ent. If 4 is to repeat, there are 3 places for the other digit, and that digit can be
chosen in 2 ways. So there are 12 three-digit numbers.

We can count the four-digit numbers in a similar way. But it is easier to notice
that every three-digit number can be completed in only one way to a four-digit
number by putting the unused digit on the right. So there are also 12 four-digit
numbers. Add up: the total is 34.

Another way: There are other ways of counting systematically. For example, count
the house numbers that begin with 5. This is equivalent to counting the numbers
we can form using only 4, 4, and 7, where we are allowed to use the “empty” number
with no digits. A quick scan shows that there are 1+ 2+ 3+3 numbers. Similarly,
there are 9 numbers that begin with 7. The situation with 4 is a little different,
but the same sort of analysis shows that there are 1 + 3 + 6 + 6 numbers. So the
total is 34.

II-25. One hundred people were asked to list all the kinds of ice cream
they liked. Three times as many people had vanilla on their list as had
strawberry. Twelve people listed both vanilla and strawberry, and twenty
people listed neither. How many people had strawberry on their list?

Solution. Let’s “guess” that 12 people like strawberry. Then 36 people like vanilla.
That includes all the people who like strawberry. When we add in the 20 who like
neither, we get 56 people, 44 short of the 100 who were questioned.

So we need to add people who like strawberry but not vanilla. For each such
person, we need to add three people who like vanilla but not strawberry, for a total
of 4 people. Since we are short of 100 by 44, we need to have 11 people who like
strawberry but not vanilla. Thus 12 + 11 people like strawberry.

Another way: Let s be the number of people who like strawberry. Then 3s like
vanilla. There are 100 − 20 people who like strawberry or vanilla or both. Of
these, 3s− 12 like vanilla alone, 12 like both vanilla and strawberry, and s− 12 like
strawberry alone. It follows that (3s− 12) + 12 + (s− 12) = 80, so s = 23.

Comment. A nicely labelled Venn diagram should be drawn. As we go through the
calculations, we can insert the numbers or expressions in the appropriate regions.
If there is no picture, even the short argument given above can seem like a jumble
of symbols and digits.

II-26. Pizzas have just been delivered for a Math Club event. Each pizza
has exactly three different toppings chosen from bacon, ham, mushroom,
onion, and red pepper. Exactly 12 pizzas have bacon as one of the toppings
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and 27 pizzas have ham. No pizza has both bacon and ham—that would be
too piggy. There is mushroom on 28 pizzas, onion on 29, and red pepper on
30. How many vegetarian pizzas are there?

Solution. Since each pizza has three different toppings, if we add together the
number of pizzas that have bacon, the number that have ham, the number that
have mushroom, and so on, the result is three times the total number of pizzas. So
there are (12 + 27 + 28 + 29 + 30)/3 pizzas. Of these 42 pizzas, exactly 12 have
bacon, 27 have ham, and there is no overlap. Thus 39 of the 42 pizzas contain some
meat; there are 3 vegetarian pizzas.

Comment. It is not immediately obvious that the situation described is indeed
possible. How many different ways are there to order pizzas that satisfy the above
constraints?

II-27. A digital clock shows only the hour and the minute. For what fraction
of the time between 12:00 noon and 12:00 midnight is there at least one 1
showing on the display? Assume that transitions are instantaneous.

Solution. There are 720 minutes in a complete cycle of the clock. At least one 1 is
showing for the four hours from 12:00 to 2:00 and 10:00 to 12:00, that is, for 240
minutes. During the remaining 480 minutes, the minutes display lies between 10
and 19 one-sixth of the time, giving an additional 80 minutes. In the remaining 400
minutes, the second digit of the minutes display is 1 one-tenth of the time, giving
an additional 40 minutes. The total is 360, exactly 1/2 of the time.

II-28. The integer lattice consists of the points in the plane whose coordi-
nates are both integers. Let A = (−20, 6) and B = (100, 150). How many
points of the integer lattice lie on the line segment AB, including both ends?

Solution. It’s always nicer when one of the points is the origin, so push everything
to the right by 20 and down by 6. Then A is pushed to the origin O, while B is
pushed to P , where P = (120, 144). Lattice points go to lattice points, so we now
ask how many lattice points there are on OP .

Let X = (x, y), with X (= O. Then X is on the line OP if and only if the slope
of OX is equal to the slope of OP , that is, if and only if x/y = 120/144 = 5/6.
Because the fraction 5/6 is in lowest terms, if x and y are to be integers, we must
have x = 5t, y = 6t for some integer t. Let t go from 1 to 24. That takes care of
everything but O, while t = 0 takes care of O, so there are 25 lattice points.

Comment. The first step, “pushing” A to the origin—equivalently, choosing a new
origin A and new coordinate axes—is unnecessary, but things go more smoothly if
we do it. Instead of working with points A and B, we end up working with the
vector B −A.

Let P = (a, b) be a lattice point other than O. Using the same argument as in
the concrete case a = 120, b = 144, we can show the line segment OP has d + 1
lattice points, where d is the greatest common divisor of a and b.
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II-29. Imagine listing, in order, the positive integers that can be represented
as a sum of one or more distinct powers of 3. The first number in the list is
1, since 1 = 30; the second is 3 and the third is 4. Find the 80-th number
in the list.

Solution. The list consists of numbers of the shape

30a0 + 31a1 + 32a2 + · · ·+ 3nan,

where each ai is 0 or 1 and not all the ai are 0. These are just the positive integers
that can be written in base 3 using only the “digits” 0 and 1, and avoiding 2.
Since “digit” is etymologically connected with “decem,” Latin for ten, we should
use another word, like “trit,” which goes nicely with the standard term “bit.”

Let N be the 80-th number of this shape. There are 26−1 numbers of the right
shape that have 6 or fewer trits, and 27 − 1 with 7 or fewer, so N has 7 trits. Since
36 is the first 7 trit number in the list, it follows that 36 is the 64-th number. Thus
N = 36 + x, where x is the 16-th number in the list. Similar reasoning shows that
x = 34, so N = 810.

Comment. The calculation can be generalized. Let N be the k-th number in the
list. Write k in binary notation, so let k = a0 + 2a1 + 22a2 + · · · , where each ai is
0 or 1. Then N = a0 + 3a1 + 32a2 + . . . . The same idea works for sums of distinct
powers of b where b is any integer greater than 1.

II-30. How many combinations of flavours are possible if we have ingredients
of 6 different tastes, namely sweet, pungent, astringent, sour, salty, and
bitter?

Solution. Count first the dishes that have a single ingredient. Obviously there are
6 possibilities. Then there are the dishes with two ingredients. We must select
2 ingredients from the 6 available. We can list all of the possibilities, or perhaps
imagine the ingredients lined up on a shelf in jars beside the fire, and call them 1,
2, 3, 4, 5, and 6. If we use flavour 1, there are 5 ways of selecting the other flavour.
If we use flavour 2 but not 1, there are 4 ways of selecting the other flavour. If we
use 3 but not 1 or 2, there are 3 ways, and so on, so in total we get 5+4+3+2+1,
namely 15.

What about 3 ingredients? The counting goes in the same way. If we use
ingredient 1, the remaining 2 ingredients can be selected in (4 + 3 + 2 + 1) ways,
and so on. We get a total of 20 ways.

What about 4 ingredients? There are just as many ways of picking 4 ingredients
as there are of picking 2 (whenever 4 are chosen, 2 are chosen to be left out). So
there are 15 ways. And there are 6 ways of picking 5, and only 1 way of picking 6.
The total is 63.

We have used only basic counting techniques. Equivalently, we can write down
the answer as

(

6

1

)

+

(

6

2

)

+

(

6

3

)

+

(

6

4

)

+

(

6

5

)

+

(

6

6

)

.
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Another way: Imagine the ingredients lined up on a shelf. The cook makes a dish
by saying Yes or No to the first ingredient, then Yes or No to the second, and
so on. So the different combinations available can be represented by “words” of
length 6 made up of letters chosen from Y and N. The first letter can be chosen in
2 ways, and for each of these ways the second letter can be chosen in 2 ways, so the
first two can be chosen in 2 · 2 ways, and so on. We get a total of 26. Not quite!
Among these 26 words is the word “NNNNNN,” which most cooks would disallow.
A mathematician might call it the empty dish.

Comment. This problem is taken from Bhāskara’s L̄ılāvat̄ı (ca. 1150). The same
question had been discussed by the physician Sushruta around −600.

In both India and Medieval Europe, scholars computed how many combina-
tions of attributes various gods could have. Mathematics has applications beyond
commerce or science.

II-31. The set {1, 2, 3, 4, 5, 6} has 26 subsets. For any such subset A, let
S(A) be the sum of all the numbers in A. Find the sum of all these sums.

Solution. The number 26 is relatively small, so we could list all 64 subsets, add up
the numbers in each, then add again. But this is unpleasant, and would become
painful if we were dealing with the 212 subsets of {1, 2, 3, . . . , 11, 12}. So we look
for a shortcut.

Every number from 1 to 6 occurs in exactly 25 subsets, so it gets added in 25

times. Thus the required sum is

25(1 + 2 + 3 + 4 + 5 + 6).

Another way: For any subset A of {1, 2, 3, 4, 5, 6}, let A′ be the collection of numbers
from 1 to 6 that are not in A. The set A′ is usually called the complement of A.
Note that the complement of the complement of A is A. So the 26 subsets can be
divided into 25 complementary pairs. Note that S(A) +S(A′) is simply the sum of
the numbers from 1 to 6, that is, 21. So the sum of all the S(A) is 21 · 25.

II-32. The positive integer n has the property D if )
√
n* is a factor of n

()x* denotes the largest integer that is less than or equal to x). How many
of the integers from 1 to 10000 have the property D?

Solution. Any perfect square d2 has the property D, for )
√
d2* = d, so the 100

perfect squares from 12 to 1002 have property D. Are there any others?
Suppose that n has the property D. Let d = )

√
n*; then n = d(d+ k) for some

non-negative integer k. We determine the possible values of k.
Since d = )

√
n*, we must have n < (d + 1)2, that is, n ≤ d2 + 2d. So n has

property D if and only if k = 0, 1, or 2. The case k = 0 has been dealt with. For
each of k = 1 and k = 2, there are 99 possibilities, from d = 1 to d = 99.

It intuitively reasonable—and not very hard to verify—that no number corre-
sponds simultaneously to two different k. We conclude that 298 of the numbers
from 1 to 10000 have the property D.
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II-33. In Figure 2.4, the chessboard on the right is made up of sixty-four
1 × 1 squares. The tromino on the left is made up of three 1 × 1 squares.
In how many different ways can this tromino be placed on the chessboard

Figure 2.4: Placing a Tromino on a Chessboard

so that it covers 3 squares of the chessboard exactly? Generalize.

Solution. We list all possibilities and then count. Concentrate on the position of
the central square of the tromino. This square could be placed on any one of
the 4 corners squares. Then the position of the other two squares is completely
determined, so we get 4 possibilities.

The central square could be on an edge square which is not a corner square.
There are 24 of these, and for each of them the tromino can be placed in 2 ways,
giving 48 possibilities. Finally, the central square could be on one of the 36 “inside”
squares. For each of these, the tromino can be placed in 4 different ways, giving
144 possibilities. The total is 196.

Repeat the argument for an n× n square. We get the answer

4 + 2(4n− 8) + 4(n− 2)2, that is, 4(n− 1)2.

What a nice-looking answer! We might as well tackle the m × n rectangle. The
same argument gives, after we simplify, 4(m− 1)(n− 1). Such nice-looking answers
deserve a less clumsy argument, they shout that we should look for

Another way: Concentrate on the inner corner point of the tromino. This point
can be placed on any one of the (m−1)(n−1) inner points of the m×n generalized
chessboard. Once the point is placed, the tromino itself can be rotated into 4
positions. So there are 4(m− 1)(n− 1) ways of placing the tromino.

Another way: We sketch an approach, based on the game Tetris, that is visually
effective but awkward to describe in words.

Place the tromino so that it is wedged into the top left corner of the chessboard.
There are 4 such starting positions. Now let it fall like a Tetris piece. Every starting
position gives rise to 7 tromino placements, for a total of 4 · 7.

But we could have moved the tromino one square to the right before letting
it fall, or two squares to the right, up to 6 squares to the right. Thus there are
(4 · 7) · 7 ways of placing the tromino. The same argument works generally.

Comment. There are stranger solutions—here is one that a topologist might find
natural. In the first solution, there were three types of squares. Each type required
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separate treatment; it would be nice to avoid that. Imagine that the chessboard is
made of thin plastic, and make it into a cylinder, overlapping the top and bottom
rows of squares. Then make the cylinder into a doughnut, overlapping the left and
right “columns” of squares. There is now symmetry, no position is special, and
there are (m − 1)(n − 1) squares. If the center square of the tromino is placed
on one of these, the rest of the tromino can be placed in 4 ways, for a total of
4(m− 1)(n− 1). Unroll the doughnut. We get all the ways of placing a tromino on
the chessboard!

II-34. How many ordered triples (x, y, z) of integers are there such that
xyz = 10000? Note that (1,−5,−2000) is not the same as (1,−2000,−5).

Solution. Let’s first count the triples of positive integers. If there are N , then there
are 4N triples of integers, because for any triple (x, y, z) of positive integers, we
also want the 3 triples that come from decorating two of x, y, and z with − signs.

Note that 10000 = 24 · 54. So the triples (x, y, z) of positive integers are given
by x = 2p5s, y = 2q5t, z = 2r5u where p, q, r, s, t, u are non-negative integers and
p+ q + r = 4, s+ t+ u = 4.

Maybe p = 0; then q ranges from 0 to 4, and once q is chosen r is determined.
Or p = 1, in which case q ranges from 0 to 3, and so on. Thus there are altogether
5+4+3+2+1, that is, 15, choices for (p, q, r). For each of these, there are 15 ways
of choosing (s, t, u). So there are altogether 225 triples of positive integers (x, y, z)
such that xyz = 10000, and therefore 900 triples in all.

II-35. How many ordered pairs (x, y) of integers satisfy the equation

√
x+

√
y =

√
2000?

Solution. Rewrite the equation as
√
y =

√
2000 −

√
x and square both sides, ob-

taining
y = 2000− 2

√
x
√
2000 + x.

The original equation is satisfied if and only if x ≤ 2000,
√
8000x is an integer, and

y is chosen as above. But 8000x = (402)(5x), and therefore
√
8000x is an integer

if and only if x is of the form x = 5n2 for some integer n. Since 0 ≤ x ≤ 2000, n
must range from 0 to 20, and there are 21 solutions.

II-36. How many ways are there to give change for a fifty-dollar bill using
only two-dollar coins, one-dollar coins, and quarters?

Solution. We can use 25 two-dollar coins, or 24, or 23, . . . , or 1, or 0. If we use
25 two-dollar coins, the job is done. If we use 24 two-dollar coins, then we need to
produce $2 from one-dollar coins and quarters, and there are 3 options (2 one-dollar
coins, 1, or 0). If we use 23 two-dollar coins, there remain 5 options, any number
of one-dollar coins from 4 down to 0. Continue all the way down to 0 two-dollar
coins. In that case, there are 51 options left.
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It follows that there are 1 + 3 + · · · + 49 + 51 ways of making change. The
arithmetic progression has sum 262, so there are 676 ways. The answer has such
an attractive shape that it is probably worthwhile to explore

Another way: We illustrate the general idea by counting the number of ways of
giving change for a ten-dollar bill. Draw a 6×6 square array of dots, as in Figure 2.5.
There is only 1 way of making change if we use 5 two-dollar coins, represented by

Figure 2.5: Making Change

the dot at the bottom left. If we use 4 two-dollar coins, there are 3 ways, represented
by the three linked dots. Go on in this way. The total number of ways of making
change is the number of dots in the picture, clearly 62.

Basically the same picture shows that there are (n+1)2 ways of making change
for a 2n-dollar bill. A closely related picture shows that there are (n + 1)(n + 2)
ways to make change for a 2n + 1-dollar bill. The coin-changing problem can be
solved without pictures, but it provides an opportunity to make connections.

Comment. In the same way, we can count the ways of giving change for a fifty-
dollar bill using one-dollar coins, quarters, and dimes, except that since a dime
does not “divide” a quarter, the counting goes a little differently—the number of
quarters must be even. Problems that involve four types of coin are also accessible.

Variants of the problem can be given even at the grade 5 level. We can ask
how many ways there are of giving change for a ten-dollar bill using only one-dollar
coins and/or two-dollar coins. Most students can find the answer, although their
list is often unsystematic. Once they learn to make a systematic list, they can be
asked about making change for a twenty-dollar bill, a fifty-dollar bill, and so on.
The advantages of organization become clear: fairly quickly they can count without
writing down a full list.

II-37. How many seven-digit numbers are divisible by 321 and have 321 as
their last three digits?

Solution. The seven-digit numbers that end in 321 have shape 1000n+321, where
1000 ≤ n ≤ 9999. And 1000n+ 321 is divisible by 321 if and only if n is divisible
by 321.

If a and N are positive integers, then the number of positive multiples of a
that are less than or equal to N is just )N/a*, the largest integer less than or
equal to N/a. On the calculator, evaluation is simple: just divide and throw
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away the part after the decimal point. In our case, the number of possibilities is
)9999/321*− )1000/321*, that is, 228.

II-38. Three movie fans were talking about the movies they saw last year
at the local theatre. The first had seen 50, the second 60, and the third 70.
Between them they saw every one of the 99 movies shown at the theatre last
year. Call a movie very popular if all three saw it, and unpopular if only one
of them saw it. How many more movies were unpopular than very popular?

Solution. Let x be the number of movies seen by only one person, y the number
seen by two, and z the number seen by all three. We want x − z. We know that
x+ y+ z = 99. Suppose that a ticket costs $1. Then the theatre made x+ 2y+3z
from the three movie fans, and this is 50+60+70, so x+2y+3z = 180. Eliminate
the variable y using our two equations. We get

x− z = 2(x+ y + z)− (x+ 2y + 3z) = 198− 180 = 18.

Comment. The information provided determines x − z uniquely, but does not de-
termine any of the quantities x, y, or z. We could ask “What are the possible
numbers of very popular movies?” It turns out that z can be any integer from 0 to
40.

II-39. Divide 500 one-dollar coins between 9 bags in such a way that if you
need to pay a bill for any integer number of dollars up to 500 you can do so
exactly by just handing over some of the bags.

Solution. Any positive integer up to 2n+1− 1 can be expressed as a sum of distinct
powers of 2 taken from 1, 2, 4, . . . , 2n. How can we see that? We can check directly
that every positive integer up to 7 can be expressed as a sum of distinct numbers
taken from 1, 2, 4. But then (add 8 or not) it follows that every positive integer
from 1 to 15 can be expressed as a sum of distinct numbers taken from 1, 2, 4, 8,
and therefore (add 16 or not) every positive integer up to 31 can be expressed as a
sum of distinct integers taken from 1, 2, 4, 8, 16, and so on.

Thus any positive integer up to 511 is a sum of distinct numbers taken from 1,
2, 4, . . . , 256, so bags of 1, 2, . . . , 256 should do the job. Unfortunately that uses
511 coins.

A small modification will work. Use bags of 1, 2, . . . , 128. That takes care of
everything up to 255. Put the remaining 245 coins into the ninth bag. Note that
245, 246, . . . , 255 end up having two different representations. There are several
other solutions. For example we could use 1, 2, . . . , 64, 127. That takes care of
everything up to 254. Put the remaining 246 coins into the ninth bag.

II-40. How many twenty-letter “words” can be made with ten A’s and ten
B’s if no two A’s can be next to each other? Generalize.
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Solution. We can list the words—there aren’t many. In general, let F (n) be the
number of 2n-letter words made up n A’s and n B’s, where no two A’s can be
next to each other. It is clear that F (1) = 2. Quickly we find that F (2) = 3 and
F (3) = 4. On the basis of this limited evidence, let’s conjecture that F (n) = n+1.

Let U be a word of the type we are considering, and look at the letters that
make up U , starting from the left. Maybe U has shape (AB)n, where by (AB)n

we mean n repetitions of the two-letter word AB. If U doesn’t have this shape, it
must have shape (AB)sV , where 0 ≤ s < n and the word V begins with B.

But if V begins with B, then V must have shape (BA)t for some integer t. For
if in V a B were ever followed by a B, the B’s would be “two ahead,” and the A’s
could only catch up if there were two successive A’s, which isn’t allowed.

We conclude that our words all have shape (AB)s(BA)t, where 0 ≤ s ≤ n and
s + t = n. Conversely, it is easy to see that any word of this shape satisfies our
conditions. Since s can be chosen in n+ 1 ways, it follows that F (n) = n+ 1.

Another way: Take 10 (or n) A’s and place them in a row like this:

A A A A A A A A A A.

Now place the B’s. We need to put a B in each of the n− 1 gaps between the A’s.
We might decide to put an extra B into one of these gaps. There are n − 1 ways
to decide where that extra B goes. Or we might use just one B in each gap, in
which case the last B goes in front or at the end. Thus there are (n− 1) + 2 ways
to construct the word.

Comment. If we are feeling in a playful mood, we might observe that in fact F (0) =
1, for there is exactly one word with no letters, the empty word, and certainly no
two A’s are next to each other in the empty word. The notion of an empty word is
useful when we study the algebra of words over an alphabet.

II-41. Find the sum of all the numbers from 1 to 2000 that are divisible by
neither 4 nor 5.

Solution. Find the sum of all numbers from 1 to 2000. Subtract the sum of the
numbers that are divisible by 4, that is, subtract 4(1+ 2+ · · ·+500); subtract also
5(1 + 2 + · · · + 400). We have taken away the multiples of 20 twice, so add back
20(1 + 2 + · · ·+ 100). To complete the calculation, use the formula for the sum of
an arithmetic progression. Unpleasant!

Another way: Note that n is divisible by neither 4 nor 5 if and only if 2000− n is
divisible by neither 4 nor 5. Pair off 1 and 1999, then 2 and 1998, 3 and 1997, 6
and 1994, and so on. Each pair adds up to 2000.

Now find the number of pairs. The smaller number is less than 1000, so count
the numbers from 1 to 1000 which are divisible by neither 4 nor 5. There are
250 divisible by 4, 200 divisible by 5, and 50 divisible by both. So there are
1000− (250 + 200− 50) divisible by neither. It follows that our sum is 1200000.
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II-42. A point in the plane with integer coordinates is called a lattice point.
How many lattice points are there inside or on the circle x2 + y2 = 16?

Figure 2.6: Counting Lattice Points

Solution. It is a good idea to draw a picture like Figure 2.6. The two axes and the
lines y = x and y = −x have been drawn in order to point out symmetries. By
taking advantage of the symmetries we can count quickly. But the answer can also
be reached without a picture.

The pair (x, y) is included if x2 + y2 ≤ 16. The numbers less than or equal to
16 that are expressible as the sum of two squares are 0, 1, 2, 4, 5, 8, 9, 10, 13, and
16. The number 0 can only be expressed in one way as the sum of two squares.
The numbers 1, 4, 9, and 16 each can be expressed in four ways. For example,
9 = 02 + (±3)2 = (±3)2 + 02. The numbers 2 and 8 also each can be represented
in four ways as the sum of two squares. (A rotation through 90◦ takes us from one
representation to another.)

The numbers 5, 10, and 13 each can be represented in eight ways, one in each
of the eight pie slices of Figure 2.6. So there are 1 + 4 · 4 + 2 · 4 + 3 · 8, that is, 49
lattice points inside the circle or on its boundary.

Comment. Let f(r) be the number of lattice points inside or on x2 + y2 = r2.
We have just shown that f(4) = 49. There is no nice formula for f(r), but a
considerable amount is known about this function.

For any lattice point P inside or on the circle, colour in red the 1×1 square that
has P as its Southwest corner. The red region has area f(r). This region roughly
coincides with the circle, and the red stuff outside the circle has more or less the
same area as the part inside the circle which isn’t red. So it is reasonable to expect
that f(r) is roughly πr2. When r = 4, πr2 is about 50.2, remarkably close to 49.

With some work, we can prove that f(r)/(πr2) is nearly equal to 1 when r is
large. A considerable amount of research effort has gone into estimating |f(r)−πr2|.
Much is known, but very difficult questions remain.

II-43. In how many ways can we select two squares on a chessboard if the
squares can’t be in the same row or the same column?
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Solution. Let C1 be the leftmost column of the chessboard, let C2 be the next
column, and so on up to C8. The leftmost square chosen is in C1 or in C2, and so
on up to C7.

First count how many choices there are in which the leftmost square is in C1.
Since any column has 8 squares, there are 8 ways to choose this square. Once the
square is chosen, there are 7 columns available for the other square, and for each
column there are 7 rows in which to put that square, a total of 8 · 7 · 7. Similarly,
there are 8 · 6 · 7 patterns in which the leftmost square is in C2. Continue all the
way to C7 and add up. There are

(8)(7)(7 + 6 + · · ·+ 1),

that is, 1568 ways to select the two squares.

Another way: We need to choose two columns. That can be done in
(

8
2

)

ways, that
is, in 28 ways. And for every choice of two columns we need to choose two rows.
That can also be done in 28 ways. So the number of possible choices is 28 · 28, that
is, 784.

Another way: The first square can be chosen in 64 ways. For each such choice, there
are 15 squares forbidden to the second square, and therefore 49 allowed squares.
That gives 64 · 49, namely 3136 choices.

We have a problem now: three different methods, three different answers! In
fact, the last two methods are wrong, but fixable.

The second solution is incorrect. One of the column pair–row pair choices that
we counted among the 784 was columns 1 and 3, rows 4 and 7. But there are two
choices of squares that are consistent with this choice of pairs: (i) one square in
column 1, row 4 and the other in column 3, row 7 and (ii) one square in column 1,
row 7 and the other in column 3, row 4. Each of the 784 column pair–row pair
choices gives rise to two choices of squares, so there are 2 · 784 such choices.

The third solution is also incorrect. The problem is that each possibility was
counted twice, for we had no right to refer to a “first” and “second” chosen square.
So the answer 3136 should be divided by 2.

Comment. The third solution is the correct approach to a different problem, namely
“In how many ways can we place a white rook and a black rook on a bare chessboard
so that they don’t attack each other?” There are indeed 64 places for the white
rook, and for each of these 49 places for the black rook.

It is all too easy to make errors in counting. Each of the two incorrect solutions
was plausible-sounding.

II-44. How many ordered triples (a, b, c) of positive integers are there with
a < b < c and a+ b+ c = 101?

Solution. Maybe a = 1. That leaves 100 to be split between b and c. We need
2 ≤ b < c, so b can travel from 2 to 49 and there are 48 solutions. Maybe a = 2.
Then 99 must be split between b and c, and 3 ≤ b < c, so b can travel from 3 to 49,
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and there are 47 solutions. Maybe a = 3. That leaves 98 to be split between b and
b, with 4 ≤ b < c. There are 45 solutions.

Let a be odd, with a ≤ 31. Then (101 − a) must be split between b and c,
with a + 1 ≤ b < c. So b can travel from a + 1 to (101 − a)/2 − 1, and there are
(101− a)/2− a− 1 solutions. In the same way, we can show that if a is even, with
a ≤ 32, there are (101− a− 1)/2− a solutions.

We could deal with odd and even numbers separately. But it is convenient to
combine terms. Let a be even. The total number of values of b for a − 1 and a
together is 101− 3a. Add up, with a going from 2 to 32 through even values. We
could add the 16 terms by hand, but note that we have an arithmetic progression
with first term 95 and last term 5, so it has sum 16(95 + 5)/2, that is, 800.

Another way: Drop temporarily the condition a < b < c. If a = 1, there are 99
choices for b, if a = 2 there are 98, and so on. So there are 1 + 2 + · · ·+ 99 = 4950
possibilities. Since 3 is not a factor of 101, the entries can’t all be equal. Count
the triples where two entries are equal. The equal entries can be anything from 1
to 50. Once that number is chosen, where the third entry goes can be chosen in 3
ways, giving 150 triples.

Thus there are 4800 triples with all entries distinct. But each triple (a, b, c) with
a < b < c gives rise to 6 ordered triples of distinct integers, so there are 4800/6
triples with a < b < c.

The count of 4950 can be found another way. Imagine 101 books on a long
shelf. Then there are 100 “gaps” between books. Insert a file card into two of these
gaps, let a be the number of books to left of the first card, b the number between
the two cards, and c the number to the right of the second card. We have expressed
101 as a sum of three positive integers. There are just as many ways to do this as
there are to choose the places where the file cards go, namely

(

100
2

)

.

II-45. (a) Let N = 100. How many positive integers less than N have digit
sum equal to 9? (b) Repeat with N = 1000 (c) Repeat with N = 10000.

Solution. Depending on the context, it may be convenient to write a number like
72 as 072, or 0072. That doesn’t affect the sum of the digits but makes for greater
symmetry.

(a) The list is short: 09, 18, 27, . . . , 90, one in each decade. There are 10.

(b) The first digit can be any of 0, 1, 2, . . . , 9. If the first digit is 0, we need to
append a number less than 100 with digit sum 9. By part (a), there are 10 of these.
If the initial digit is 1, we need to append a number less than 100 with digit sum
8. By making a simple list, we find there are 9 of these. The pattern continues.
There are 10 + 9 + · · ·+ 1, that is, 55 numbers.

(c) The reasoning of (b) shows that for k = 0, 1, . . . , 9 a digit sum of k occurs
for (k + 1)(k + 2)/2 numbers less than 1000. But any number less than 10000 can
be made by taking a digit from 0 to 9 and appending a number less than 1000.
So the answer can be found by summing (k + 1)(k + 2)/2 as k goes from 0 to 9.
We could develop some theory (see VI-51) or simply add the 10 numbers, which is
undoubtedly faster! The sum is 220.
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Another way: There is a more elegant approach which we illustrate with 10000, but
the idea is general. Place 9 + 3 white pebbles in a row, then choose three of them
to paint black. The black pebbles divide the white into four groups, some possibly
empty. Write down one after the other the number of white pebbles in each group.
We have made a four-digit number with digit sum 9. So the answer is

(

12
3

)

.

II-46. How many possible yearly calendars are there?

Solution. There are two kinds of year: ordinary and leap. For each kind, the
calendar is completely determined if we know the day of the week January 1 falls
on. So there are no more than 7 + 7 calendars. That doesn’t quite answer the
question: we must verify that each of these 14 calendars can occur.

If an ordinary year begins on a certain day of the week, then the next year
begins on the next day of the week. This follows from the fact that 364 is divisible
by 7. If a leap year begins on a certain day, the next year begins two days of the
week later.

Call the day that 2001 started Day 1 (it happens to be Monday). Then 2002
starts on Day 2, 2003 on Day 3, 2004 on Day 4, 2005 on Day 6 (note the jump),
2006 on Day 7, and then back to Day 1. Note that every four years, the day of the
week appears to advance by 5. We get the following (broken up into groups of four
for convenience):

1234 6712 4567 2345 7123 5671 3456.

Then things begin all over again with 1234. Now we can see that ordinary years can
begin with any of 1, 2, . . . , 7. So can leap years: the fourth number in the group
takes on the values 4, 2, 7, 5, 3, 1, 6. There are indeed 14 different calendars.

Comment. It looks as if calendars travel through a 28 year cycle. That’s not quite
true, for 1900, 2100, and in general years divisible by 100 but not by 400 are not
leap years. It turns out that the number of days in 400 years is a multiple of 7, so
the true cycle length is 400.

How long do we need to wait until we can recycle a leap-year calendar? From
our list, it looks as if we have to wait precisely 28 years. That’s usually true, but
because 2100 is not a leap year, it turns out that the 2096 leap year calendar will
be reusable in 2108.

II-47. Let S(n) be the number of perfect squares with exactly n digits. How
does S(n+ 1)/S(n) behave for large n?

Solution. Let F (n) be the number of perfect squares with n or fewer digits. There
are )

√
M* perfect squares from 1 to M ()x* is the largest integer which is less than

or equal to x). Thus F (n) = )
√
10n − 1*.

In particular, F (n) is quite close to
√
10n. More precisely, F (n) = 10n/2 − en,

where en is an “error” term which is always positive and never greater than 1. Now

Sn+1

Sn
=

Fn+1 − Fn

Fn − Fn−1
=

10(n+1)/2 − 10n/2 − en+1 + en
10n/2 − 10(n−1)/2 − en + en−1

.



CHAPTER 2. COUNTING 60

Divide top and bottom of the above expression by 10(n−1)/2. The numerator
now has shape 10 − 101/2 plus an error term which is negligibly small when n
is large—n doesn’t even have to be particularly large!—while the denominator is,
apart from a negligible error term, equal to 101/2 − 1. Simplify. For large n,
S(n+ 1)/S(n) is very close to 101/2.

II-48. When (x + 1)(x + 2)(x + 3) · · · (x + 10) is expanded out, we get a
polynomial P (x) of the form a0x10+a1x9+ · · ·+a9x+a10. Note that a0 = 1
and a10 = 10!. Find a0 + a2 + a4 + · · ·+ a10.

Solution. We could expand and add, but there is an easier way. Note that P (1) =
a0 + a1 + · · ·a10 = 11!. Also, P (−1) = a0 − a1 + · · ·+ a10 = 0. It follows that

a0 + a2 + · · ·+ a10 =
P (1) + P (−1)

2
=

11!

2
.

Comment. The idea has many uses. For example, the Binomial Theorem says that
if n is a positive integer, then

(1 + x)n =

(

n

0

)

+

(

n

1

)

x+

(

n

2

)

x2 + · · ·+
(

n

n

)

xn.

By substituting x = 1 and x = −1 into the above formula, we obtain
(

n

0

)

+

(

n

1

)

+ · · ·+
(

n

n

)

= 2n and

(

n

0

)

−
(

n

1

)

+ · · ·+ (−1)n
(

n

n

)

= 0.

II-49. How many ways are there to arrange the ten digits from 0 to 9 in a
row so that 1 is (somewhere) to the right of 0, 3 is to the right of 2, 5 to the
right of 4, and so on. One such arrangement is 6274853019.

Solution. Make 10 slots to hold the digits. We pick two slots to hold 0 and 1. That
can be done in

(10
2

)

ways. Once we have picked the two slots, we have no choice

about who goes where. For every one of the
(10
2

)

ways, there are
(8
2

)

ways picking
the slots that will hold 2 and 3, and then where each goes is forced. So there are
(10
2

)(8
2

)

of placing the first four digits. Continue in this way. We conclude that
there are

(

10

2

)(

8

2

)(

6

2

)(

4

2

)

arrangements. Calculation shows that there are 113400.

Another way: There are 10! ways of arranging the digits 0, 1, . . . , 9 in a row. One-
half of these have 1 somewhere to the right of 0, and half have 1 somewhere to the
left of 0. So 10!/2 arrangements satisfy the first condition. Of these arrangements,
half have 3 somewhere to the right of 2, and half have 3 somewhere to the left, so
10!/22 arrangements satisfy the first two conditions. We go on in this way, finally
concluding that 10!/25 arrangements satisfy all five conditions.
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Comment. We often use counting to evaluate probabilities. The second solution in
a sense used probability in order to count. For let N be the number of arrange-
ments that satisfy all five conditions. Then the probability that a randomly chosen
arrangement satisfies all five conditions is N/10!. But this probability is the same
as the probability of getting 5 heads in a row when tossing a fair coin, that is, 1/25,
so N = 10!/25.

II-50. LetN be the number whose decimal expansion has the shape 999 · · · 998—
one hundred 9’s followed by an 8. Find the sum of the decimal digits of N2.

Solution. We should experiment with a calculator, using a lot fewer 9’s. A pattern
emerges, and if we believe that the pattern will continue, we can come up with an
answer. But we should aim to achieve certainty.

Since N = 10101 − 2,

N2 = 10202 − 4 · 10101 + 4.

Perform the subtraction, in the usual paper and pencil way. We will have to
”borrow.” More formally,

N2 = (10202 − 10102) + (10102 − 4 · 10101) + 4.

The first bracketed term has 100 9’s followed by 102 0’s. The second has a 6 followed
by 101 0’s. So the digit sum is 100 · 9 + 6 + 4, that is, 910.

II-51. Find the percentage of seven-digit numbers that contain the digit 1.

Solution. We take the common-sense view that for example 0001234 is not a seven-
digit number. The seven-digit numbers range from 1000000 to 9999999, so there
are 9× 106.

Next we count the seven-digit numbers that don’t have a 1. The leftmost digit
of such a number can be chosen in 8 ways. For each such choice, the second digit
can be chosen in 9 ways, so there are 8 · 9 ways to choose the first two digits. For
every choice of the first two digits, there are 9 choices for the third. After a while
we conclude that there are (8)(96) seven-digit numbers with no 1’s.

Divide. About 47.24% of the numbers don’t have a 1, and therefore about
52.76% of them have a 1.

II-52. (a) A mathematics binder contains 1001 pages of notes. How many
ways are there to insert three blue dividers in the binder? Dividers can’t
go at the ends, and there can’t be two consecutive dividers. (b) Find the
number of positive integer solutions of

s+ t+ u+ v = 1001.

The solution s = 300, t = 300, u = 1, v = 400 is different from s = 1,
t = 300, u = 300, v = 400. (c) Find the number of solutions in non-negative
integers of the equation of part (b).
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Solution. (a) There are 1000 “spaces” between pages. We wish to choose three of
these spaces to put blue dividers into. There are

(1000
3

)

ways of doing this. That
number turns out to be 166167000.

(b) Let s be the number of pages of notes from the beginning to the first divider, t
the number of pages from the first divider to the second, u the number of pages from
the second to the third, and v the number after the third. Then s+t+u+v = 1001.
Conversely, is s, t, u, and v are positive solutions of our equation, we can insert
dividers after the s-th page, after the (s + t)-th page, and after the (s + t + u)-th
page. Thus there are just as many solutions as there are ways of placing three
dividers, so the answer is the same as in part (a).

(c) We recycle the idea of part (b). There are just as many ways of expressing 1001
as a sum of four non-negative integers as there are of expressing 1005 as a sum of
four positive integers. So by the method of part (b) there are

(1004
3

)

solutions.

II-53. How many solutions does x + 2y + 3z = 60 have in non-negative
integers?

Solution. We count the non-negative solutions of x + 2y + 3z = 6n, where n ≥ 0.
With more effort we can count the solutions of x+2y+3z = 6n+r for any specified
r between 0 and 5.

For any given z between 0 and 2n, we count the solutions of x+ 2y = 6n− 3z.
Let z be even, say z = 2u. We are solving x + 2y = 6n − 6u. Since y can travel
from 0 to 3n− 3u, there are 3n− 3u+ 1 possibilities for y. For each of these, x is
determined.

Add up, with u going from 0 to n. We have an arithmetic progression with first
term 3n+ 1 and last term 1, so the sum is (n+ 1)(3n+ 2)/2.

Let z be odd, say z = 2u − 1. We are solving x + 2y = 6n − 6u + 3. There
are 3n− 3u + 2 possibilities for y. Add up, with u going from 1 to n. The result
is n(3n+ 1)/2 Now add together the counts for odd and even values and simplify.
The result is 3n2 + 3n+ 1. When n = 10 this is 331.

Another way: Let F (n) be the number of solutions of x + 2y + 3z = 6n in non-
negative integers. These solutions are of two types: (i) those where x, y, and z are
positive and (ii) those where one or more of the variables is 0.

The solutions of type (i) can be obtained by finding non-negative solutions of
u + 2v + 3w = 6n− 6 and letting x = u+ 1, y = v + 1, z = w + 1. Thus there are
F (n− 1) solutions of type (i).

We count the solutions of type (ii) directly. We deal first with z = 0. Then
x can be any even number from 0 to 6n, so there are 3n + 1 solutions. Similarly,
there are 2n+ 1 solutions with y = 0. For x = 0, we are looking at 2y + 3z = 6n.
Note that y must be a multiple of 3, say 3s, and z a multiple of 2, say 2t. We get
s+ t = n, and so there are n+ 1 solutions.

Add up: the sum is 6n+3. This is not the right answer, since the 3 solutions in
which two of the variables are 0 have been counted twice. So there are 6n solutions
of type (ii). We have obtained the recurrence relation

F (n) = F (n− 1) + 6n.
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Now we can program a computer to calculate anything we need. Note that F (0) =
1. Thus by the recurrence formula, F (1) = 7, F (2) = 19, F (3) = 37, and so on.
We quickly get to F (10).

We can also use the recurrence to find an explicit formula for F (n). By using
the recurrence repeatedly, we get

F (1) + F (2) + · · ·+ F (n) = F (0) + F (1) + · · ·+ F (n− 1) + 6(1 + 2 + · · ·+ n).

Almost everything cancels. Since F (0) = 1, we get

F (n) = 1 + 6(1 + 2 + · · ·+ n).

It follows that F (n) = 3n2 + 3n+ 1. For other ways of finding F (n), see VI-31.



Chapter 3

Geometry

Introduction

The geometric problems considered here fall mostly in a narrow range: In-
formation is given about some features (sides, angles, areas) of a geometric
object, ordinarily a triangle or some object that can be reduced to triangles,
and questions are asked about the size of some other feature of the object.
The questions usually involve particular numbers even when the method is
obviously general.

Occasionally, the main hurdle in solving the problem is algebraic, in
that there is an easy reduction to an equation or a system of equations, but
solving the equations presents difficulties. Symmetries are systematically
taken advantage of.

There are no proofs of the “two-column” type. All too often students
end up being asked to include a statement such as “A = A,” and to justify
it by the “reflexive property of equality.” It isn’t surprising if they some-
times conclude that mathematics is not about understanding real things,
but rather a formal exercise with words.

Not many tools are needed. The Pythagorean Theorem is used, explicitly
or implicitly, in a majority of the solutions. The more general Cosine Law
(c2 = a2+ b2−2ab cosC) is occasionally useful. A few times it is convenient
to know how to find the area of a triangle given two sides and the angle
between them (Area = (ab/2) sinC).

Problems III-54 and III-92 give methods of trisecting the angle and du-
plicating the cube with compass and marked straightedge. They connect
with construction problems that go back almost to the beginnings of Greek
geometry.

64
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Problems and Solutions

III-1. A diameter of an ellipse is a line that bisects all chords parallel to a
given line. For the ellipse with equation

4x2 − 6xy + 9y2 − 2x− 5y − 100 = 0,

find (a) the diameter that bisects chords parallel to the y-axis; (b) the diam-
eter that bisects chords parallel to the x-axis; (c) the center of the ellipse.

Solution. (a) View the equation as a quadratic in y. Let x0 be a particular value
of x, and imagine solving for y in terms of x0. The sum of the roots is (6x0 +5)/9,
so half the sum is (6x0 + 5)/18. Thus if (x0, y0) is the midpoint of the chord
that has equation x = x0, then y0 = (6x0 + 5)/18, so the diameter has equation
y = (6x+ 5)/18.

(b) The same method shows that the diameter that bisects chords parallel to the
x-axis has equation x = (6y + 2)/8.

(c) The diameters of parts (a) and (b) meet at (11/18, 13/27).

III-2. A triangle has vertices a, b, and g. The ratio of side ab to side ag
is as 3 to 5, the altitude ad is 5 feet, and the base bg is 20 feet. Find the
remaining sides of the triangle.

Solution. The triangle of the problem is sketched in Figure 3.1. Let de be equal
to bd. Take line segment eg to have length 2x. Then be has length 20 − 2x, and

a

b gd e

Figure 3.1: A Problem from Regiomontanus

therefore bd is 10− x while dg is 10 + x.
Square bd; the result is x2 + 100− 20x. Add to this the square of the altitude,

namely 25, and you get x2 + 125− 20x, which by the Pythagorean Theorem is the
square of ab. Similarly, the square of ag is x2 + 20x+ 125. But the square of ab is
to the square of ag as 9 to 25. Multiply the first by 25 and the second by 9. We
obtain after simplifying 16x2 + 2000 = 680x. Solve the quadratic equation. After
some simplification we obtain

x =
85± 5

√
209

4
.
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The rest of the computation is straightforward, but more pleasant to do with a
calculator than “exactly.” It turns out that

ab =
15
√

34∓ 2
√
209

4

and of course bg = (5/3)(ab).

Comment. The problem and method of solution are taken from Book II of Re-
giomontanus’ De Triangulis (Concerning Triangles, 1464). This work of 137 pages
is divided into five “books,” the first two about triangles in the plane and the last
three about spherical triangles.

Figure 3.1 is reproduced from the book. At the time, the first three letters of
the alphabet were a, b, and g. Regiomontanus reached the verbal equivalent of the
above quadratic equation—he used no symbols, our version is anachronistic.)

Regiomontanus didn’t bother to solve the equation. If he had, he would have
noticed that there are two admissible solutions, one of which gives a triangle very
different in shape from the triangle of his diagram.

III-3. A teacher likes to assign group projects. This year, every student in
her class is involved in 6 group projects. Any two projects have exactly one
student in common. And for any two students, there is exactly one project
that both students are on. How many students are there in the class? Hint:
First show that any project involves exactly 6 students.

Solution. What is this problem doing in a geometry chapter? Instead of using the
words “student” and “project,” use the abstract words “point” and “line.” This
change of language will help, but we must be careful not to assume that line and
point have the usual geometric properties.

Any point is on 6 lines, any two lines have exactly one point in common, and
for any two points, there is exactly one line that they are both on. Because of the
wording of the problem, we assume that any group project (line) has at least two
points on it.

We first show that any line ! has exactly 6 points. There are lines other than !.
Any such line has exactly one point in common with !, so there is a point P which
is not on !. Any point X on ! determines a unique line PX through P . Conversely,
any line through P meets ! in one point X . So there are just as many points on !
as there are lines through P , namely 6.

Now let A be any point. There are 6 lines through A. Any point X lies on such
a line, namely the line AX . No point other than A lies on more than one of these
lines. Since each line has 6 points, each of the 6 lines through A contains 5 points
other than A, for a total of 30. So including A there are 31 points. (There are also
31 lines.)
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Comment. The “plane” in this problem differs from the usual Euclidean plane in
two significant ways. Instead of having infinitely many points, it has only 31. Also,
any two lines meet in a point. The Euclidean plane almost has this property, except
that there are also parallel lines that don’t meet at all.

A “plane” in which any two lines meet is called a projective plane. Projective
planes arise naturally when we study the problem of drawing objects in correct
perspective. Finite projective planes, like the one in this problem, have applications
in coding theory and even in statistics.

It turns out that in a finite projective plane all lines have the same number n+1
of points. The number n is called the order of the plane. By the same argument as
the one above, a plane of order n has n2 + n+ 1 points. There are many unsolved
problems about finite projective planes. In the late twentieth century, a team led
by Clement Lam proved that there is no projective plane of order 10, solving a
problem that was more than 200 years old. It is not known whether there is a
plane of order 12.

III-4. Let !t be the line with slope t that passes through the point (−1, 0).
Where does !t meet the circle x2 + y2 = 1?

Solution. The line !t has equation y = t(x + 1). Substitute for y in the equation
x2 + y2 = 1. We obtain

(1 + t2)x2 + 2tx+ t2 − 1 = 0.

The product of the roots is (t2 − 1)/(1 + t2). Since one of the roots is −1, the
other is given by x = (1 − t2)/(1 + t2). Then x + 1 = 2/(1 + t2), and therefore
y = 2t/(1 + t2).

Comment. If x2 + y2 = 1 and x and y are rational numbers (ratios of integers),
then t is rational. So all rational points (x, y) on the unit circle, except for (−1, 0),
can be expressed as x = (1− t2)/(1 + t2), y = 2t/(1 + t2), where t is rational. The
missing point (−1, 0) can be thought of as corresponding to t = ∞.

The fact that (cos θ, sin θ) travels around the unit circle as θ travels over the
interval [0, 2π) is extremely useful. The fact that as t travels over the reals, (1 −
t2)/(1 + t2), 2t/(1 + t2) travels around the unit circle (missing (−1, 0)) also has a
number of uses.

III-5. The consecutive vertices of a square are A, B, C, and D. Given that
P is inside the square and ∠PCD = ∠PDC = 15◦, show that %APB is
equilateral.

Solution. We use the left-hand square in Figure 3.2. Let our square have side 2.
To show that %APB is equilateral, it is enough to show that PAX is a 60◦ angle,
or equivalently that PX =

√
3. A look at %PYD shows that PY = sin 15◦, so we

need to show that tan 15◦ = 2−
√
3. The calculator says that there is equality to at
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Figure 3.2: Angle Chasing in a Square

least 9 decimal places. Thus %APB is equilateral for all practical purposes. And
it is very plausible that the triangle is fully equilateral.

To get certainty, note that

sin 15◦ = sin(60◦ − 45◦) =

√
3

2
·

1√
2
−

1

2
·

1√
2
=

√
3− 1

2
√
2

and similarly cos 15◦ = (1 +
√
3)/2

√
2, so tan 15◦ = (

√
3 − 1)/(

√
3 + 1). Finally,

multiply “top” and “bottom” by
√
3− 1 to obtain the desired result.

Alternately, note that cos 30◦ = 1 − 2 sin2 15◦ and therefore sin2 15◦ = (2 −√
3)/4. Similarly, cos2 15◦ = (2 +

√
3)/4. Divide, and rationalize the denominator.

We conclude that tan2 15◦ = (2 −
√
3)2.

Another way: We first show that if %APB is equilateral, then ∠PCD = ∠PDC =
15◦. A little angle chasing does it.

Suppose that ∠PDC = θ. Then ∠PDA = 90◦−θ. Since %APB is equilateral,
AP = AX = AD, and therefore ∠DPA = 90 − θ. But ∠Y PD = 90◦ − θ, and
∠APX = 30◦, and therefore

(90◦ − θ) + (90◦ − θ) + 30◦ = 180◦,

so θ = 15◦.
This doesn’t settle things: we need to show that if ∠PCD = ∠PDC = 15◦,

then %APB is equilateral. In general, from the fact that if S then T , we cannot
conclude that if T then S.

Imagine that the lines through P are made of stretched elastic. When %APB
is equilateral, the angles at the bottom are exactly 15◦. If P is pulled downwards,
the angles at the bottom shrink below 15◦, and if P is pushed up, the angles at
the bottom grow beyond 15◦. So if they are exactly 15◦ , then %APB must be
equilateral.

Another way: Look at the right-hand square in Figure 3.2. For symmetry, %CDP
has been replicated on the other three sides of the square ABCD. We obtain an
inner square, with isosceles triangles erected outwards on its four sides. In each such
triangle, the angle opposite the dashed side is 90◦ minus twice 15◦, so the triangles
are all equilateral. Thus ∠AQP = 150◦, and therefore %AQP and %AQD are
congruent, so AP = AD and the result follows.
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III-6. The midpoints of the sides of triangle T0 are joined to make triangle
T1. Then the midpoints of the sides of T1 are joined to make triangle T2,
and so on forever. (a) Suppose that the line ! is a median of T0. Show that
! is a median of Tn for all n. (b) Show that the medians of T0 meet in a
point.

Solution. (a) The situation is illustrated in Figure 3.3. Let P be the midpoint
of the bottom side, and ! the line that passes through A and P . We first show

A

B C
P

QR

Figure 3.3: Nested Triangles

that ! is a median of T1, that ! bisects the line segment RQ. Since ARPQ is a
parallelogram, its diagonals bisect each other. But these diagonals are ! and RQ.
Alternately, %ARQ is a scaled down version of %ABC, so since ! bisects AB it
also bisects RQ.

Now repeat the argument starting with T1. Since ! is a median of T1, it follows
that ! is a median of T2, and so on forever.

(b) There is exactly one point X which is in all the triangles Tn. But ! passes
through Tn for every n, so ! must pass through X . This is also true for the other
two medians of T , so the three medians of T meet at X .

Comment. The fact that the medians of a triangle meet in a point is an important
geometric theorem. There are many proofs.

III-7. (a) A 7×5 rectangle is divided into 35 equal squares as in Figure 3.4.
Find the area of %ABC. (b) Let T be a triangle whose vertices have integer
coordinates. Show that the area of T is of the form n/2 where n is an integer.

Solution. (a) The rectangle has area 35, and is divided into four triangles, including
%ABC. The triangles other than %ABC are right-angled, with sides that can be
read off from the picture. Their combined area is 20, so %ABC has area 15.

(b) If the coordinates of the vertices of T are integers, then, like %ABC of Fig-
ure 3.4, T can be inscribed in a rectangle R with sides parallel to the axes. The
part of R outside T is made up of three right-angled triangles with integer legs.
Each of these triangles has area of the form m/2 where m is an integer. Since R
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A
B

C

Figure 3.4: The Area of a Lattice Triangle

has integer area, it follows that the area of T is of the form n/2 where n is an
integer.

Comments. 1. The integer lattice is the collection of points in the plane that have
integer coordinates. A polygon whose vertices are lattice points is called a lattice
polygon.

We can find the areas of complicated lattice polygons by using Pick’s Theorem,
which says that the area is i+p/2−1, where i is the number of lattice points inside
the polygon, and p is the number of lattice points on the periphery of the polygon.
(For %ABC, we have i = 12 and p = 8.) Proving Pick’s Theorem is a challenging
but accessible task.

2. We cannot make an equilateral triangle all of whose vertices have integer coor-
dinates. An equilateral triangle of side x has height x

√
3/2, so it has area x2

√
3/4.

By the Pythagorean Theorem, if triangle T has vertices with integer coordinates,
then any side of T has length of the form

√
m for some integer m. So if T were

equilateral, it would have area m
√
3/4 for some integer m. By part (b), this area

is half an integer, say n/2, so m
√
3 = 2n. But

√
3 cannot be expressed as the ratio

of two integers.

III-8. Let S be a collection of 101 points in the plane. Show that there is
a point P in S, and a line passing through P , such that 50 of the points in
S are on one side of the line and 50 are on the other side.

Solution. Draw a line ! such that all the points in S are on one side of !. Slowly
move ! parallel to itself towards S. After a while, the line moves past a point in S,
then another, then another. Keep moving until the line has moved past 50 of the
points and just reaches the 51st, and we are done.

Not quite! The argument breaks down if as ! moves it can meet points of S in
bunches. We will make the argument work by making sure that the moving line
can’t pass simultaneously through more than one point of S.

There are only finitely many lines that contain two or more points of S. In fact,
there are at most

(101
2

)

, that is, 5050, and possibly far fewer. These lines determine
only finitely many slopes. Choose ! so that its slope is different from all the slopes
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determined by pairs of points in S. Then the moving line can’t ever contain two or
more points of S, so the original argument now works.

III-9. There is a square garden with a circular pool of water in the middle.
The land area of the garden is 3300 square paces. The distance from any
edge of the garden to the point on the pool furthest from that edge is 40
paces. Find the diameter of the pool.

Figure 3.5: The Pool in the Garden

Solution. Let the radius of the pool be r. By looking at Figure 3.5, we can see that
the garden has side length 40+(40− 2r). The pool has area πr2, and the land area
of the garden is 3300, so

(80− 2r)2 − πr2 = 3300.

This equation simplifies to (4− π)r2 − 320r+3100 = 0. Solve, using the quadratic
formula. The roots are approximately 9.95325 and 362.83014. The second answer
is absurd, for the side length of the garden would be negative. The diameter of the
pool is therefore about 19.9.

Comment. This problem comes from Li Zhi’s textbook Yigu yuandan (New Steps in
Calculation), published in 1259. Li Zhi chose the dimensions so that the quadratic
factors nicely if π is taken to be 3. He got 20 as the diameter of the pool.

III-10. A mathematician moonlighting as a baker has made an acute-angled
triangular cake, frosted on top but not on the sides. The box for the cake
fits perfectly, but only if the cake is put in upside down. Show how to cut
the cake into some pieces so that the cake can be put in the box right side
up. Try to find more than one solution.

Solution. Three different methods are illustrated in Figure 3.6. In the leftmost
picture, the circumcenter of the triangle, that is, the point where the perpendicular
bisectors of the sides meet, is joined to the vertices, and the cake is cut along these
lines. The cuts divide the cake into three isosceles triangles. To turn the cake into
its mirror image, leave the bottom triangle in the picture alone and interchange the
left and right triangles.
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Figure 3.6: The Triangular Cake

The method only works when the circumcenter is in the triangle. That’s true
in particular if the angles are acute. The next two methods work for any triangle.

Another way: In the middle picture of Figure 3.6, the triangle has been placed with
a longest edge at the bottom. Drop a perpendicular (the dashed line) from the top
vertex to the bottom edge and let it meet the bottom at P . Draw two lines through
P at angles that cut off two isosceles triangles. A bit of angle-chasing shows that
these lines bisect the two remaining sides.

We have cut the original triangle into two isosceles triangles and a kite-shaped
figure. It is easy to rearrange these three pieces to make the mirror image of the
original triangle.

Another way: In the rightmost picture of Figure 3.6, the triangle is placed so that
neither angle at the bottom is obtuse. Draw a line parallel to the bottom and
halfway up the triangle, and drop a perpendicular from the top vertex to that line.
Cut the triangle along these lines. The picture shows how to rearrange the pieces
to make a rectangle.

If we had started with the mirror image of the original triangle and used the
same cutting procedure, we would arrive at the same rectangle. So, by reversing the
process, we can turn the rectangle into the mirror image of the original triangle.

Comment. There is a related general result called the Bolyai-Gerwien Theorem.
Let A and B be polygons with the same area. Then A can be cut up into a finite
number of polygonal pieces that can be reassembled, without turning over any
piece, to make B. So for example if the cake box has a square top with the same
top area as the cake, then the triangular cake can be cut into pieces that fit into
the box perfectly.

III-11. Find the distance from the point (9, 1) to the line with equation
2x+ y = 4.

Solution. The distance from a point P to a line ! is the length of PQ, where Q is
the point on ! nearest to P . A quick sketch shows that if P is not on ! and Q is
the point on ! nearest to P , then PQ is perpendicular to !.

In this problem, P = (9, 1). Let Q = (u, v). Since Q lies on the line 2x+ y = 4,
we have v = 4− 2u. The line 2x+ y = 4 has slope −2, so any line perpendicular to
it has slope 1/2. It follows that PQ has slope 1/2, so

4− 2u− 1

u− 9
=

1

2
and therefore u = 3 and v = −2.
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Finally, compute the distance between (9, 1) and (3,−2). This is
√
45.

Another way: Let (u, v) travel over the line 2x+ y = 4. So v = 4− 2u. We want to
choose (u, v) so that the distance from (9, 1) to (u, v) is a minimum, or equivalently
minimize the square of the distance, namely (9− u)2 + (1− v)2.

Substitute 4− 2u for v in (9− u)2 + (1− v)2 and simplify. We minimize

5u2 − 30u+ 90, that is, 5
[

(u− 3)2 + 9
]

.

Since (u − 3)2 can’t be negative, the minimum occurs when u = 3, where the
function has value 45. The required distance is therefore

√
45.

Comment. Let ! be the line with equation ax+ by = c, and let P be the point with
coordinates (p, q). Using the same argument as in the concrete example above, we
can show that the distance from P to ! is

|ap+ bq − c|√
a2 + b2

.

III-12. The point (4, 6) is the midpoint of a chord of the circle with equation
(x − 1)2 + (y − 2)2 = 169. Find an equation of the line that contains the
chord.

Solution. The circle has center (1, 2), so the line that joins the center of the circle
to the midpoint of the chord has slope (6 − 2)/(4 − 1), that is, 4/3. This line is
perpendicular to the chord, and therefore the chord itself has slope −3/4.

The line that contains the chord passes through (4, 6) and has slope −3/4,
so its equation can be written as y − 6 = (−3/4)(x − 4), or more attractively as
3x+ 4y = 36.

III-13. The center of a parallelogram is at (1,π) and one of its sides AB
lies on the line x + 2y = 9. Find an equation of the line that contains the
side of the parallelogram which is opposite AB.

Solution. Let ! be the line that passes through (1,π) and is parallel to x+ 2y = 9.
Then ! has an equation of the shape x + 2y = a. Since ! goes through (1,π) we
find that a = 1 + 2π. So the x-intercept of ! is 1 + 2π.

The line x+2y = 9 has x-intercept equal to 9. The line which contains the side
of the parallelogram opposite AB has equation of the shape x+ 2y = b, where b is
its x-intercept.

The x-intercept of ! lies midway between 9 and b, and therefore

9 + b

2
= 1 + 2π.

It follows that b = 4π − 7 and the required line has equation x+ 2y = 4π − 7.
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III-14. The midpoints of the sides of a triangle have coordinates (1, 1),
(5,−3), and (7, 6). Find the coordinates of the vertices of the triangle.

Solution. Let the vertices be A, B, and C, with (1, 1) the midpoint of AB and
(5,−3) the midpoint of BC. Let the x-coordinates of A, B, and C be r, s, and t.
Then

r + s

2
= 1,

s+ t

2
= 5, and

t+ r

2
= 7.

Add up the left-hand sides, add up the right-hand sides. We get r + s + t = 13.
Since s+ t = 10, we conclude that r = 3. Similarly, s = −1 and t = 11.

Find the y-coordinates of A, B, and C in the same way. The vertices of the
triangle turn out to be (3, 10), (−1,−8), and (11, 2).

Comment. The computation has been presented purely algebraically, but there is
a rich set of ideas connected with it. Let ABC be a triangle, with A = (r, u),
B = (s, v), and C = (t, w). Then the coordinates of the centroid of %ABC are
(r+ s+ t)/3 and (u+ v+w)/3. A geometer would define the centroid as the point
where the medians of the triangle meet. A physicist would define it as the center
of mass of the triangle.

The triangle obtained by joining the midpoints of the edges of %ABC has
the same centroid as %ABC. In the case that we studied, the midpoints are
(1, 1), (5,−3), and (7, 6), so the centroid of the triangle of midpoints is (13/3, 4).
Thus (r + s + t)/3 = 13/3. The equation r + s + t = 13, which we obtained
by algebraic manipulation, can therefore be obtained from purely geometric (or
physical) considerations.

III-15. Find equations for all lines that pass through (1, 4) and that form,
together with the x-axis and the y-axis, a triangle of area 9.

Solution. An informal sketch shows that there should be four such lines. Two of
the triangles so formed are in the first quadrant, and one each in the second and
the fourth. We could reason geometrically, but in this case algebra is faster.

Suppose that line ! passes through (1, 4) and has slope m. Then ! has equation
y = mx+(4−m). The y-intercept of ! is 4−m, while the x-intercept is (m−4)/m.

The triangle formed by ! and the coordinate axes has area (m− 4)2/2|m|. This
area should be 9, and therefore (m− 4)2 = 18|m|.

Suppose first that m is negative. Then |m| = −m and we obtain the equation
m2 + 10m+ 16 = 0, which has the solutions m = −2 and m = −8. Now suppose
that m is positive. We obtain m2 − 26m + 16 = 0, which has the solutions m =
13±

√
153.

III-16. The three square fields of Figure 3.7 have area 25, 26, and 85 acres.
Find the area of the triangular field.
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Figure 3.7: The Four Fields

Solution. For the record, an acre is 160 square rods, and a rod is 5.5 yards. To
honour the whimsical nature of Imperial measures, let’s call the side of a 1 acre field
a whimsy. So the triangular field has sides of length

√
25,

√
26, and

√
85 whimsies.

Let θ be the angle opposite the
√
25 whimsy side. By the Cosine Law

25 = 26 + 85− 2
√
26
√
85 cos θ

so cos θ = 43/(
√
26
√
85), and therefore sin θ = 19/(

√
26
√
85).

The area of the triangular field is

√
26
√
85 sin θ

2
.

Substitute the computed value of sin θ and simplify. The area is 9.5 acres.

III-17. A rectangular sheet of paper is 24 cm long and 10 cm wide. The
paper is folded so that two diagonally opposite corners coincide. Find the
length of the crease.

A B

CD

O

X

Figure 3.8: Folding a Rectangle

Solution. Fold the paper and then unfold. Let the rectangle be labelled as in
Figure 3.8, with AB = 24 and BC = 10. The diagonal AC and the fold line are
perpendicular bisectors of each other. Note that %AOX is similar to %ABC, and
therefore

OX

AO
=

BC

AB
=

10

24
.
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By the Pythagorean Theorem, AC =
√
242 + 102 = 26, and therefore AO = 13.

Thus OX = (13)(10)/24, and therefore the length of the crease is 65/6.

Another way: Instead of using the geometry, we can compute in more or less clumsy
ways. We show for example how to solve the problem by using coordinates.

Take the center O of the rectangle as the origin, and let X = (x,−5). We have
A = (−12,−5) and C = (12, 5). Since XA = XC, the distance formula gives

(12 + x)2 = (12− x)2 + 102.

Simplify and solve. We obtain x = 100/48. Since OX =
√
x2 + 52, we can now

calculate OX and double the result to find the length of the crease.

III-18. The area of a right-angled triangle is 16 cm2, and the hypotenuse is
15 cm. Find the perimeter of the triangle.

Solution. Let the legs be a and b. Then ab = 32 and a2+b2 = 225. So a2+2ab+b2 =
289, and therefore a+ b = 17. If follows that the perimeter is 32. There are more
complicated (and less symmetrical) ways to solve the problem.

Comment. The first surviving problem of this type occurs in Gerbert’s Geometry.
His solution also exploits the symmetry. Gerbert (938–1003) became Pope Sylvester
II.

III-19. The vertices of a regular 12-sided polygon lie on a circle of radius
1. Find the sum of the squares of the distances from one vertex P to all the
other vertices of the polygon. Generalize.

Solution. Choose as origin the center of the circle. By choosing the coordinate axes
appropriately, we can take the vertices to be P = (1, 0), (

√
3/2,±1/2), (1/2,±

√
3/2),

and so on. Now we can use the distance formula to calculate. There is a lot of
symmetry, so the calculation doesn’t take long. But we can prove a stronger result
in an easier way.

We work with a regular 2n-sided polygon inscribed in a circle of radius 1. Let
P be any point on the circle, not necessarily a vertex. The vertices of the polygon
can be divided into diametrically opposite pairs. If {A,B} is such a pair, and P is
not A or B, then ∠APB is a right angle, since ∠APB is the angle subtended by a
diameter of the circle.

By the Pythagorean Theorem, (PA)2 + (PB)2 = (AB)2 = 4. If P = A or
P = B, we also have (PA)2 + (PB)2 = 4. Thus each of the n pairs makes a
contribution of 4 to the sum of the squares, for a total of 4n. For the 12-gon, the
sum is 24.

Comment. In fact the sum of the squares of the distances is 2m for any regular
m-gon inscribed in a circle of radius 1, even when m is odd, but the proof is more
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messy. Let O be the center of the circle, let V1, V2, . . . , Vm be the vertices, and let
θi be the angle between OP and OVi. By the Cosine Law,

(PVi)
2 = (OP )2 + (OVi)

2 − 2(OP )(OVi) cos θi = 2− 2 cos θi.

Add up from i = 1 to i = m. The sum of the cos θi is 0 (to show this takes some
work), so the sum of the squares of the distances is 2m.

III-20. A right-angled triangle has legs of length 3 and 4. Outward facing
semicircles are drawn with these legs as diameter. An inward facing semicir-
cle is drawn with the hypotenuse as diameter. Find the area of the shaded
region in Figure 3.9.

3

4
5

Figure 3.9: A Theorem of Hippocrates

Solution. We could find the area of each shaded piece. This is not the best way to
handle the problem, so we merely record the answers. The shaded piece on the left
has area

2π + 3−
(

5

2

)2

arcsin
4

5

and the one at the bottom has area

9π

8
+ 3−

(

5

2

)2

arcsin
3

5
.

Here arcsinx means the angle (in radians, between −π/2 and π/2) whose sine is x.
Now we could compute using the calculator, but there is no need for one, for the
right triangle in the picture shows that arcsin(4/5) + arcsin(3/5) = π/2. Now add
the two areas and simplify. The π’s disappear and the result is 6.

There is a much less complicated approach. Look at the entire regionR covered
by Figure 3.9. We can think of R as the semicircle “on 4,” plus the semicircle “on
3,” plus the triangle. We can also think of R as the semicircle “on 5” plus the
shaded region.

The two small semicircles have combined area equal to that of the big semicircle.
We can show this by an easy computation, but it is also a consequence of a natural
generalization of the Pythagorean Theorem: if similar figures are erected on the
two legs and the hypotenuse of a right angled triangle, then the sum of the areas
of the figures on the two legs is equal to the area of the figure on the hypotenuse.
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It follows by cancellation that the shaded region has the same area as the
triangle, namely 6.

Comment. Hippocrates of Chios (circa −450) did the same calculation for the
isosceles right triangle with legs 1, concluding that each “lune” has area 1/4. Thus
a natural region with curvy sides can have a nice area. Hippocrates was probably
interested in the problem of “squaring the circle,” that is, constructing a square
with the same area as a given circle. It has been known since the late nineteenth
century that this can’t be done with straightedge and compass.

III-21. Show how to divide a given triangle T into 2100 triangles each
similar to T . The small triangles won’t all be the same size.

Solution. If we divide each side of a triangle into k equal parts, and through the
division points draw lines parallel to the sides, the lines divide the given triangle
into k2 small triangles each similar to the original.

Take for instance k = 45. So we have divided T into 2025 congruent triangles
each similar to T . We need to make 75 more triangles. That can be done by taking
25 of the 2025 triangles and dividing each into 4 parts by joining the midpoints of
the sides (this is the case k = 2). There many other ways to do the job.

III-22. A six-sided polygon is inscribed in a circle. All its angles are equal.
Show that its sides need not be equal. What can be said about seven-sided
equal-angled inscribed polygons? Generalize.

a

a

a
a

a
a

a

a

bb

b

b

b b

P

Figure 3.10: Equal-angled Hexagons and Heptagons

Solution. Starting at the center of the left circle in Figure 3.10, and moving coun-
terclockwise, draw isosceles triangles with apex angles that alternate between x and
y, where x+ y = 120◦. In the picture, x = 75◦ and y = 45◦.

A bit of angle-chasing shows that for every choice of x and y we get an equal-
angled inscribed hexagon. (This is in fact the only way to get such hexagons.) If
x (= y, then the sides are not all equal. By letting x + y = 360◦/n with x (= y, we
obtain in the same way an equal-angled inscribed 2n-gon with unequal sides.

Now suppose that an equal-angled heptagon has been inscribed in the right
circle of Figure 3.10. Start at P , and let the first angle we meet be a degrees. Then
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as we travel counterclockwise, the next angle must be a, and the one after that b,
where a+ b = 900/7. The one after that must also be b. Go on all the way around.
When we get back to P , we can see that if a (= b there is a conflict. It follows
that the heptagon must be regular. Exactly the same argument works for inscribed
equal-angled n-gons where n is odd: every such n-gon has equal sides.

III-23. Find the equation of the line obtained by reflecting the line y =
−3x+ 3 in the line y = x+ 1.

Solution. Reflection in y = x is familiar: in equations it simply interchanges the
roles of x and y. So we pull both lines down by 1, reflect, then push back up.

When we pull y = −3x+3 down by 1, we get the line y = −3x+2. The reflection
of this line in y = x has equation x = −3y + 2, or equivalently y = −x/3 + 2/3.
When we push this up by 1, we obtain y = −x/3 + 5/3.

Comment. The type of strategy we used is sometimes called Transform, Solve,
Transform Back. It is an important device throughout mathematics. For other
examples in this chapter see III-64 and III-79.

There are other reasonable approaches to the problem. We could focus on
what is left invariant (unchanged) by the reflection. For example, the point of
intersection of the two lines is invariant.

III-24. In Figure 3.11, ABCD is a 1× 1 square, and AX = CY = a. Find
the length of PQ.

A B

CD

P

Q

X

Y

Figure 3.11: Lines in a Square

Solution. We can use coordinate geometry. The calculations won’t be difficult, so
there is no need to be clever about the choice of origin and axes.

Let A = (0, 0) and B = (1, 0). Then X = (0, a). The line XB has equation
y = −ax+ a. Since P is the intersection point of the lines y = −ax+ a and y = x,
we find that the x and y coordinates of P are each a/(1 + a).

By the distance formula, AP =
√
2a/(1 + a), and by symmetry, AP = CQ.

Finally, since AC =
√
2,

PQ =
√
2−

2
√
2a

1 + a
=

√
2(1− a)

1 + a
.



CHAPTER 3. GEOMETRY 80

Another way: Figure 3.12 is obtained from 3.11 by extending AD to Z, with
DZ = a. For clarity, the part of 3.11 “below” AC has been cut away. Now we

A

CD

P

Q

X

Z

Figure 3.12: Solution to Lines in a Square

can read off the answer. By similarity, PQ/XD = AC/AZ. Since XD = 1 − a,
AC =

√
2, and AZ = 1 + a, it follows that PQ =

√
2(1 − a)/(1 + a). The same

idea works if we start with a parallelogram instead of a square.

III-25. Two lines meet at O. Let A, B, and C be any three points on the
first line, and P , Q, and R be three points on the second line such that AQ
is parallel to BP and BR is parallel to CQ. Show that AR is parallel to
CP . Please see Figure 3.13.

A
B

C

PQRO

Figure 3.13: A Special Case of a Theorem of Pappus

Solution. Note that %OAQ is similar to %OBP , so OA/OB = OQ/OP , and
therefore OA · OP = OB · OQ. Also, %OBR is similar to %OCQ, so OB/OC =
OR/OQ, and therefore OB · OQ = OC · OR.

We conclude that OA · OP = OC · OR, and therefore OA/OC = OR/OP . It
follows that %OAR is similar to %OCP , and therefore AR is parallel to CP .

Comment. A more general theorem was proved by Pappus of Alexandria, who
probably lived in the third century. Much later, Pappus’ Theorem was recognized
as one of the key theorems of Projective Geometry.
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III-26. Show how to split a square into 6 squares; 7 squares; 8 squares; 101
squares.

Solution. Figure 3.14 shows how to split a square into 6, 7, or 8 squares. The
decompositions are essentially unique. When n ≥ 9, there are several ways to split

Figure 3.14: Splitting Squares

a square into n squares. Suppose first that n is even, say n = 2k. We can imitate
the decompositions given for n = 6 and n = 8: divide the “L” on the South and
West into 2k − 1 equal squares, leaving a single large square on the North-east.

If n is odd, let n = 2k + 3. Divide the square into 2k squares as described
above, then divide the large square on the North-east into 4 equal squares.

Another way: Given a decomposition into m squares, we can get a decomposition
into m+3 squares by splitting one of the squares into 4 equal squares—gain 4, lose
1. Any n ≥ 9 differs from one of 6, 7, or 8 by a multiple of 3. So by taking the
picture for 6, 7, or 8, and splitting squares into 4 parts repeatedly, we can produce
a decomposition into n squares.

III-27. The vertices of a quadrilateral, in counterclockwise order, are A, B,
C, and D. Let the midpoints of AB, BC, CD, and DA be P , Q, R, and S.
Show that PQRS is a parallelogram (it is called the Varignon parallelogram
of ABCD).

A B

C
D

P

Q

R

S

Figure 3.15: The Varignon Parallelogram

Solution. In Figure 3.15, draw the diagonalAC. Since P bisects side AB of%ABC,
whileQ bisects CB, the line PQ is parallel toAC. A similar argument using%ADC
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shows that SR is also parallel to AC. Since PQ and SR are each parallel to AC,
they are parallel to each other.

Now draw the diagonal BD, and argue that since QR and PS are each parallel
to BD, they are parallel to each other. Since the sides of PQRS are parallel in
pairs, PQRS is a parallelogram.

III-28. In Figure 3.16, lines parallel to the three sides of triangle T are
drawn through an interior point of T . The three small triangles in the
picture have areas a, b, and c as shown. Find the area of T .

a

b

c

Figure 3.16: Splitting a Triangle

Solution. Because the lines drawn are parallel to the sides, all triangles in Fig-
ure 3.16 are similar. Let α, β, and γ be the base lengths of the triangles of area a,
b, and c. Because the triangles are similar, there is a constant k such that

a = kα2, b = kβ2, and c = kγ2.

The base of T is made up of three segments, whose lengths, from left to right,
are α, β, and γ. It follows that T has area k(α+ β + γ)2. But

α =
√

a/k, β =
√

b/k, and γ =
√

c/k,

so the area of T is (
√
a+

√
b+

√
c)2.

Comment. We can choose the unit of length independently of the unit of area. The
solution looks nicer if we choose the unit of area so as to make k = 1.

III-29. Quadrilateral ABCD is split into two triangles of equal area by its
diagonal AC, and also by its diagonal BD. Explain why the quadrilateral
must be a parallelogram.

Solution. Let the diagonals meet at O. Figure 3.17 is inaccurate, since %ABC and
%CDA obviously have different area. The picture has been drawn in this way so
that we will make no unwarranted assumptions.

Triangles ABC and CDA have the same base AC. Since their areas are the
same, their heights h are the same. Triangles ABO and ADO have the same base
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A B

C
D

O

Figure 3.17: Splitting a Quadrilateral

AO, and the same height, namely h, so they have the same area. Similarly, triangles
BCO and CDO have the same area.

The same argument, starting from the fact that %ABD and %BCD have the
same area, shows that %ABO and %BCO have the same area. It follows that the
diagonals split ABCD into four triangles of equal area.

If%AOB and%BOC are viewed as triangles with bases AO and CO, they have
equal heights and equal areas, so AO = CO. Similarly, BO = DO. Since ∠AOB =
∠COD, triangles AOB and COD are congruent. It follows that ∠CAB = ∠ACD,
and therefore AB and DC are parallel. In the same way, we can show that BC
and AD are parallel, and therefore ABCD is a parallelogram.

III-30. The corners of a rectangle, taken counterclockwise, are P , Q, R,
and S. Suppose that the distances of point X from P , Q, R and S are p, q,
r, and s. Show that p2 + r2 = q2 + s2.

Solution. Place P at the origin, and Q on the positive x-axis. Let PQ = a and
QR = b. Then the coordinates of the corners of the rectangle are (0, 0), (a, 0), (a, b),
and (0, b). Let the coordinates of X be (x, y). Then x2+y2 = p2, (x−a)2+y2 = q2,
(x − a)2 + (y − b)2 = r2, and x2 + (y − b)2 = s2. We need to show that

(x2 + y2) + ((x− a)2 + (y − b)2) = ((x− a)2 + y2) + (x2 + (y − b)2).

This algebraic identity, like most such identities, is easily verified by expanding
both sides.

Comment. It is prettier to place the origin at the center of the rectangle and to let
the sides be 2a and 2b. Essentially the same proof can be given without coordinates
by using the Pythagorean Theorem instead of the distance formula.

But we haven’t solved the problem! The solution took it for granted that X
lies in the plane of the rectangle. Suppose it isn’t. Let X ′ be the projection of X
onto the plane, and let d = XX ′. Let p′, q′, r′ and s′ be the distances of X ′ from
P , Q, R, and S. By the Pythagorean Theorem, p2 = d2 + (p′)2, q2 = d2 + (q′)2,
and so on. Since (p′)2 +(r′)2 = (q′)2 +(s′)2 we obtain the desired result by adding
2d2 to both sides.
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III-31. In the trapezoid ABCD of Figure 3.18, AB is parallel to CD and
the diagonals meet at O. Given that %AOB has area 4 and %COD has
area 3, find the area of ABCD.

A B

CD

O

Figure 3.18: The Area of a Trapezoid

Solution. The triangles AOB and COD are similar. Since their areas are in the
ratio 3 : 4, the sides BO and DO are in the ratio

√
3 : 2.

If we think of %AOB and AOD as having bases BO and DO, they have the
same height, and therefore %AOD has area 4(

√
3/2). Similarly, we can show that

%BOC has area 4(
√
3/2). Alternately, note that since %CAD and %DBC have

the same area, so do %AOD and %BOC. Add up the areas of the four triangles.
The result is 7 + 4

√
3.

Comment. Suppose that %AOB has area p, and %COD has area q. The above
argument shows that the area of the trapezoid is p+q+2p

√

q/p, or more attractively
(
√
p+

√
q)2.

III-32. Five points are picked inside or on an equilateral triangle of side 2
meters. Show that no matter how the points are chosen, two of these points
are no more than 1 meter apart.

Solution. Divide the original triangle into four equilateral triangles of side 1 by
joining the midpoints of the sides. Since there are only four triangles, and we have
picked five points, at least two of these points must lie on or inside the same small
triangle. The distance between these two points can’t be greater than 1.

Comment. Using the same idea, we can show that if 5 points are picked in a square
of side 2 then two of these points are no more than

√
2 apart, and that if 7 points

are picked in a regular hexagon of side 1 then two of them are no more than 1
apart.

III-33. Is there a triangle whose three altitudes have length 5, 9, and 12?
Is there a triangle with altitudes 6, 10, and 13?
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Solution. There is no triangle with altitudes 5, 9, and 12. For suppose to the
contrary that there were such a triangle, and it had area k/2. Let a, b, and c be
the lengths of the bases for which the altitudes are 5, 9, and 12 respectively. Then
5a/2 = 9b/2 = 12c/2 = k/2 and therefore

a =
k

5
, b =

k

9
, and c =

k

12
.

Note that k/9 + k/12 < k/5, and therefore b + c < a. This is impossible, for the
sum of any two sides of a triangle is greater than the third side. We conclude that
there is no triangle with the specified altitudes.

The situation is different for altitudes 6, 10, and 13. It is easy to verify that
the sum of any two of 1/6, 1/10, and 1/13 is greater than the third. So there is a
triangle T with sides 1/6, 1/10, and 1/13. Let the area of T be k/2.

Since the sides of T are 1/6, 1/10, and 1/13, and its area is k/2, the corre-
sponding altitudes are 6k, 10k, and 13k. Now rescale T by multiplying all sides by
1/k. The altitudes are rescaled by the same factor, so they become 6, 10, and 13.

Comment. The area of T can be computed explicitly by using Heron’s Formula—
the area of the triangle with sides a, b, and c is

√

s(s− a)(s− b)(s− c), where s
is the semiperimeter (a+ b+ c)/2. The area is needed if we want to find the sides
of the triangle that has altitudes 6, 10, and 13. But the area is not needed if we
merely want to show that there is such a triangle.

III-34. Triangle ABC has a right angle at C. The inscribed circle of%ABC
meets the hypotenuse at W , where AW = p and BW = q. Find a formula
for the area of %ABC in terms of p and q.

Solution. Let the inscribed circle meet BC at U and AC at V . A glance at Fig-
ure 3.19 shows that AV = p and BU = q. Let r = CU = CV . (It so happens that
r is the radius of the inscribed circle, but that will play no role.) Then the right
triangle has legs p+ r and q + r. By the Pythagorean Theorem,

A B

C

U
V

Wp q

Figure 3.19: The Area of a Triangle

(p+ r)2 + (q + r)2 = (p+ q)2.
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Rewrite the above equation as r2+pr+ qr = pq, then add pq to both sides to make
the left side factor. We obtain (p + r)(q + r) = 2pq. The expression on the left is
twice the area of %ABC, so the triangle has area pq.

Comment. Things turn out almost as nicely if ∠ACB is 120◦ instead of 90◦. The
Cosine Law gives

(p+ r)2 + (q + r)2 + (p+ r)(q + r) = (p+ q)2.

This equation can be rewritten as (p + r)(q + r) = 4pq/3. The area of %ABC is
(1/2)(p+ r)(q + r) sin 120◦, that is, pq/

√
3.

More generally, suppose that ∠ACB = θ. Then

(p+ r)2 + (q + r)2 − 2(p+ r)(q + r) cos θ = (p+ q)2.

Expand the three squares, do some cancellation, divide by 2, and add pq to both
sides. We get

(p+ r)(q + r) − (p+ r)(q + r) cos θ = 2pq.

The above equation can be rewritten as

(p+ r)(q + r) sin θ

2
= pq

sin θ

1− cos θ
.

The expression on the left is the area of %ABC. Now use the trigonometric iden-
tities

sin θ = 2 sin(θ/2) cos(θ/2) and cos θ = 1− 2 sin2(θ/2).

The area of %ABC is therefore pq cot(θ/2).

III-35. The face diagonals of a box have length 5, 6, and 7. Find the volume
of the box.

Solution. Let the faces with diagonal 5 have side a and b, and let c be the third
side of the box. By the Pythagorean Theorem,

a2 + b2 = 25, b2 + c2 = 36, and c2 + a2 = 49.

To solve this system, we use a trick motivated by the symmetry. Adding up gives
2a2 + 2b2 + 2c2 = 110. So c2 = (a2 + b2 + c2) − (a2 + b2) = 30. Similarly, b2 = 19
and a2 = 6. The volume is

√
6 · 19 · 30.

III-36. Rectangle R has area 10.5 square meters. The circle that passes
through the four corners of R has area 7π square meters. Find the sides of
R.
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Solution. Let the sides be a and b. Then

ab = 10.5 and π

(√
a2 + b2

2

)2

= 7π,

or more simply 2ab = 21 and a2 + b2 = 28, so a2 + 2ab+ b2 = 49. By subtracting
2ab instead of adding, we get in the same way (a− b)2 = 7. Thus

a+ b = 7 and a− b = ±
√
7.

Solve for a and b by adding and subtracting. The sides are (7 +
√
7)/2 and (7 −√

7)/2.

Comment. Another in the endless string of problems involving symmetric functions!
Finding the perimeter would have been even simpler.

The equations can be solved almost as easily by substituting 10.5/a for b in
a2 + b2 = 28—that’s what most students do. But “breaking symmetry” early is
often unwise, so it is useful to train oneself to hold on to symmetries as long as
possible.

III-37. When a fine saw blade makes a straight cut, it turns to sawdust
a strip of width 0.01 units, called the kerf. The blade was used to cut a
10× 10 sheet of plywood into 100 equal squares. Calculate the area turned
to sawdust, to 4 places after the decimal point.

Solution. Make the cuts and then squeeze to close the small gaps created by the
saw. There are 9 cuts in each direction, each of width 0.01. After cutting and
squeezing we have a 9.91 × 9.91 square, with area 98.2081. The area turned to
sawdust is therefore 1.7919.

Another way: There are 9 cuts in each direction, each of length 10 and width 0.01,
giving 1.8 as the area turned to sawdust. No, that’s not quite right, for each of
the 0.01× 0.01 squares where the saw cuts meet has been counted twice. These 81
squares have combined area 0.0081, so the area turned to sawdust is 1.7919.

Comment. In the second solution, we obtained an incorrect answer of 1.8, then
corrected it to 1.7919. But 1.8 is close enough for all practical purposes. This
example illustrates the fact that if ε is close to 0, then ε2 is often negligibly small
in comparison with ε. (In the plywood problem, ε = 0.01.) The fact that ε2 is
negligible compared with ε lies at the heart of the calculus.

III-38. A bamboo is 10 ch’ih tall. It is broken, and the top touches the
ground 3 ch’ih from the root. How high up is the break?
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R

S

T3

10

Figure 3.20: The Broken Bamboo

Solution. Let the bottom (“root”) of the bamboo stalk be at R, the place of the
break at S, and let the old top of the bamboo meet the ground at T . Assume that
the bamboo grows vertically on level ground. So ∠SRT is a right angle. Please see
Figure 3.20. Let the height of the break, namely RS, be x. Then ST = 10− x. By
the Pythagorean Theorem, x2 + 32 = (10− x)2. Simplify and solve: x = 91/20.

Another way: We can use two variables. Let z = ST . Then z + x = 10 and
z2 − x2 = 9, so z − x = 9/10. It follows that 2x = 91/10, so x = 91/20.

Comment. This problem is taken from the Jiuzhang suanshu—see I-14. The broken
bamboo theme appears often in old Chinese texts. The same question occurs in the
work of Brahmagupta, a seventh-century Indian astronomer and mathematician.
His bamboo is 18 units long, and the top meets the ground 6 units from the root.
It is not known whether the problem was transmitted from one civilization to the
other.

There are no recorded sloping ground broken bamboo problems. If the top of
the bamboo heads downhill, such a problem can be solved by using the Cosine Law
instead of the Pythagorean Theorem.

III-39. The line ! is tangent to the parabola with equation y = x2, and
passes through (2, 1). Find an equation for !.

Solution. A quick sketch shows that there should be two such tangent lines. Let m
be the slope of !. Since ! passes through (2, 1), it has equation y = m(x− 2) + 1.

In the equation y = x2, replace y by m(x − 2) + 1. A tangent line meets the
parabola in a single point. Equivalently, the equation x2 −mx + 2m − 1 = 0 has
exactly one solution. This is the case precisely if the discriminant m2 − 4(2m− 1)
is equal to 0. Solve the resulting quadratic equation for m. The solutions are
m = 4± 2

√
3.

III-40. A square town has a gate at the midpoint of each of its sides.
Twenty chang North of the northern gate is a tree which is just visible from
the point one gets to by walking 14 chang South from the southern gate,
then 1775 chang West. Find the length of a side of the town.
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PQ

G
T
N

Figure 3.21: The Town with Four Gates

Solution. Please see Figure 3.21, which for clarity is not drawn to scale. Let the
side of the town have length 2x, let N be the middle of the northern gate, and T
the location of the tree. Let P be the point 14 chang South of the southern gate,
and Q the point 1775 chang West of P . Finally, let G be the point where the line
QT just grazes the Northwest corner of the town.

Triangles TPQ and TNG are similar, and therefore (34 + 2x)/1775 = 20/x.
Rewrite this as 2x2 + 34x− 35500 = 0 and solve: 2x = 250.

Comment. This problem is taken from the Jiuzhang suanshu (see I-14). The num-
bers were obviously chosen by working backwards from the intended answer. Math-
ematics may change, but teachers of mathematics do not.

III-41. In a lake that swarmed with red geese, the tip of a lotus bud was seen
half a hasta above the surface of the water. Forced by the wind, it gradually
advanced, and was submerged at a distance of two hasta. Compute quickly,
mathematician, the depth of the lake.

A

B

W

d

T

Figure 3.22: The Lotus Plant

Solution. Let the bottom of the lotus be at B, the tip at T , and suppose that
initially the plant breaks the surface of the water at W . Then BW is the depth of
the lake; call this d. (Please see Figure 3.22.)
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When the lotus tip advanced, it met the water at the point labelled A, where
WA = 2. And since AB is the height of the lotus plant, AB = d + 1/2. (We are
meant to assume that the lotus stalk behaves like a rigid rod hinged at B.)

By the Pythagorean Theorem, d2 + 22 = (d + 1/2)2. Simplify and solve: d =
15/4.

Comment. This comes from Bhāskara’s L̄ılāvat̄ı which was written in verse, in
keeping with an Indian custom of the time that it would be interesting to revive.

It is said that Bhāskara had a daughter named L̄ılāvat̄ı whose husband died
shortly after their wedding day, and that Bhāskara composed mathematical prob-
lems to help her through her grief. In another version of the story, Bhāskara found
bad omens in L̄ılāvat̄ı’s horoscope and called off her wedding. Long ago, before
universities and institutes, mathematicians could earn a respectable living as as-
trologers.

III-42. Let H be a regular hexagon. Join midpoints of consecutive edges
of H to make the regular hexagon K. Find the ratio of the area of K to the
area of H.

Solution. Choose the unit of length so that the edges of H have length 1, and let
s be the edge length of K.

Let A and B be consecutive vertices of K, and let P be the vertex of H that
lies between A and B. Then ∠APB = 120◦, and sides PA and PB of %APB have
length 1/2. By the Cosine Law

s2 = (1/2)2 + (1/2)2 − 2(1/2)(1/2)(−1/2) = 3/4.

If lengths in a figure are scaled by the factor s, then the area of the figure is scaled
by the factor s2. It follows that K has three-quarters the area of H.

Another way: The next solution uses less machinery, only Figure 3.23. In the
picture, O is the (common) center of the hexagons, A and B are consecutive vertices
of K, and P is the vertex of H between A and B.

Draw lines from O to the vertices of K. These lines divide K into 6 triangles,
and H into 6 kite-shaped figures, so it is enough to compare the areas of OAB and
OAPB. Let X be the center of the equilateral %OAB, and join X to O, A, and
B, splitting %OAB into three triangles each congruent to %APB. Since %OAB is
made up of three triangles congruent to %APB while the kite OAPB is made up
of four such triangles, the area of %OAB is three-quarters the area of the kite.

III-43. Two bamboos stand 27.8 hasta apart. One is 15 hasta high, and
the other is 10 hasta high. Straight strings run from the top of each bamboo
to the base of the other. How far above the ground do the two strings meet?



CHAPTER 3. GEOMETRY 91

A
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X

Figure 3.23: Joining the Edge Bisectors of a Hexagon

A

B

P Q

X

Yp q
h

Figure 3.24: Two Bamboos

Solution. Please see Figure 3.24. Let A be the top of the 15 hasta bamboo and
P its base. Let B and Q be the corresponding points for the other bamboo. For
convenience and generality, write a for 15 and b for 10.

Let the strings meet at X and let Y be the point where the perpendicular from
X meets the ground. Let p be the length of PY and q the length of QY . Finally,
let h be the height of X off the ground.

Triangles APQ and XYQ are similar and therefore

h

a
=

q

p+ q
and by symmetry

h

b
=

p

p+ q
.

Add up. The numbers p and q magically disappear, and some manipulation gives
h = ab/(a+ b).

Comment. Note that the answer is independent of the distance between the bam-
boos. This question is adapted from a problem in Bhāskara’s L̄ılāvat̄ı—see III-41.
Bhāskara didn’t specify the distance between the bamboos.

III-44. In Figure 3.25, %ABC has area 27 square units, P is a point on
the line segment AB, and Q is a point on BC. Line segment AP is 4 units
long, PB = 6, BQ = 8, and QC = 10. Find the area of %PBQ.

Solution. Draw the line segment AQ. View%ABQ as having base BQ, and%ABC
as having base BC. The two triangles then have equal heights, so their areas are
in the proportion 8 : 18, and therefore %ABC has area 12.
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Figure 3.25: The Area of %PBQ

Now view %PBQ and %ABQ as having bases 6 and 10 and the same height.
So their areas are in the proportion 6 : 10, and therefore %PBQ has area 7.2.

III-45. Find the area of an equiangular hexagon whose sides are alternately
a and b.

Solution. The angles between the edges of any hexagon add up to 720◦. Since the
hexagon is equiangular, these angles are all 120◦. Let the vertices of the hexagon,
taken sequentially, be A, B, C, D, E, and F . The line segments AC, CE, and
EA divide the hexagon into four parts, three congruent triangles and an inner
equilateral triangle.

By the Cosine Law, the inner equilateral triangle has sides
√
a2 + ab+ b2,

and therefore area (
√
3/4)(a2 + ab + b2). Each of the three outer triangles has

area (ab/2) sin 120◦, that is, ab
√
3/4. So altogether the area of the hexagon is

(
√
3/4)(a2 + 4ab+ b2).

III-46. A circle of radius 5 is internally tangent at P to a circle C of radius
9. The diameter of C that passes through P meets C again at Q. A tangent
line drawn through Q to the smaller circle meets C at R. Find the length of
QR. Please see Figure 3.26.

O
PQ

RT

Figure 3.26: Internally Tangent Circles

Solution. Let O be the center of the smaller circle, and let T be the point of
tangency ofQR with this circle. Then ∠QTO is a right angle. Also, ∠QRP is a right
angle. It follows that %QTO and %QRP are similar. Thus QR/QT = QP/QO.
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But QO = 18− 5 = 13, and therefore by the Pythagorean Theorem QT = 12.
It follows that QR = 12 · (18/13).

Comment. In almost every problem about circles, it is useful to connect the center
of a circle with some point.

III-47. A paper drinking cup is cone-shaped. When there is water in the
cup to a depth of 4 inches, the cup contains 16 cubic inches of water. How
much water is in the cup when the water is 6 inches deep?

Solution. The volume of a cone of height h and base radius r is πr2h/3. Let the
radius of the “base” of the cone of water when the water is 4 inches deep be r.
Then 4πr2/3 = 16, so r =

√

48/4π.
Now let R be the radius of the base of the cone of water when water is 6 inches

deep. By a similar triangles argument, R/r = 6/4, and thereforeR = (6/4)
√

48/4π.
The volume of the larger cone is 6πR2/3. Now calculate (without a calculator).
There is a lot of cancellation, and the answer turns out to be 54 cubic inches.

Another way: The second cone is simply a scaled up version of the first, with all
lengths multiplied by 6/4. Scaling lengths by a scale factor s scales the volume by
the factor s3. Thus the new volume is 16(6/4)3.

Comment. The second solution is much more attractive than the first. It is essen-
tially immediate, and relies on fundamental principles rather than manipulation of
formulas.

The first solution only deals with a special case: the problem didn’t say that
the cone is right circular, but the solution relied on the volume formula for such
cones. The second solution works for all cones, and even generalized cones. (A
generalized cone is the surface obtained by joining all points on a simple closed
plane curve to some point not in the plane of that curve.) So the second proof
applies, for example, to a pyramidal drinking cup.

A slightly more complicated problem involves two identical cups. The water
in the first is 6 inches deep and the second cup is empty. Water is poured into
the second cup from the first to a depth of 4 inches, and the first cup is placed
upright again. How deep is the water that remains in the first cup? Analysis using
the volume formula is unpleasant, but a scaling analysis shows that the depth is
3
√
63 − 43, about 5.3 inches, perhaps surprisingly high.

III-48. A quadrilateral is divided into four triangles by its diagonals. As
we travel counterclockwise, the first three triangles that we meet have areas
8, 9, and 10. Find the area of the fourth triangle.

Solution. Let the vertices be P , Q, R, and S, and let the diagonals meet at M .
Suppose that %PMQ has area 8, %QMR has area 9, and %RMS has area 10.
Let a be the area of %SMP .
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View the first two triangles as having bases MP and MR. Then they have
the same height, and therefore MP/MR = 8/9. The same argument applied to
%RMS and %SMP shows that MP/MR = a/10. Thus a = 80/9.

Another way: The angles around M all have the same sine; call that common sine
s. Recall that if x and y are two sides of a triangle, and the angle between these
sides has sine s, then the triangle has area (xy)(s/2). Since the first three triangles
have area 8, 9, and 10,

(MP )(MQ)(s/2) = 8, (MQ)(MR)(s/2) = 9, and (MR)(MS)(s/2) = 10.

It follows from these equations that (MS)(MP )(s/2) = 80/9.

III-49. On a spherical asteroid far far away, miners have bored a 10 kilo-
meter straight tunnel that leads from the surface back again to the surface.
When they are 1 km into the tunnel, they are 100 meters below the surface
of the asteroid. How far below the surface are they halfway into the tunnel?

Solution. We first find the radius r of the asteroid. Let P be the start of the tunnel,
Q the end, and W the point 1 kilometer into the tunnel from P . Let S and T be
endpoints of the diameter of the asteroid that passes through W , with S the one
closest to W . Then WP = 1, WQ = 9, WS = 0.1, and WT = 2r − 0.1. (Please
see Figure 3.27.) Note that %WSP and %WQT are similar. This follows from the

C

P Q

S

T

M
W

Figure 3.27: The Tunnel

fact that ∠WSP = ∠WQT—they are both angles subtended by the chord PT . So
0.1/1 = 9/(2r − 0.1), and therefore r = 45.05.

Finally, let C be the center of the asteroid, and M the midpoint of PQ. By the
Pythagorean Theorem, CM =

√

(45.05)2 − 52. So at the midway point the miners
are r − CM , about 278 meters, below the surface.

III-50. The circle in Figure 3.28 has radius 1. Find the area of the square
ABCD, where A and B are on the circle and side CD is tangent to the
circle.
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A

B C

D

O
P Q1

1

s

Figure 3.28: Circle and Square

Solution. Let O be the center of the circle. Draw the diameter through O that is
perpendicular to CD. Let this diameter meet AB at P and CD at Q, and let s be
the side length of the square.

Note that OP has length s − 1, while AP has length s/2. Thus by the
Pythagorean Theorem (s − 1)2 + (s/2)2 = 1. Simplify, solve for s, and square
the result. The area is 2.56.

III-51. Let ABC be a triangle, with CA = 5, CB = 12, and AB = 13. Let
M be the midpoint of side AB. Find the length of CM .

Solution. Note that 52+122 = 132, so by the converse of the Pythagorean Theorem
%ABC is right-angled at C. The circle with centerM and radius 13/2 goes through
A and B.

If AB is a diameter of a circle, and P is any point on the circle other than
A and B, then ∠APB = 90◦. What is useful here is that the converse holds: if
∠APB = 90◦, then P lies on the circle. So C lies on the circle, and therefore
CM = 13/2.

Comment. The same argument works for any right-angled triangle. But one can
say more. Let ABC be any triangle, let M be the midpoint of AB. The line
segment CM is called a median of the triangle. Let m = CM , a = BC, b = AC,
and c = AB. We express m in terms of a, b,, and c.

Let θ = ∠AMC, and let φ = ∠BMC. By the Cosine Law

b2 =
( c

2

)2
+m2 − cm cos θ and a2 =

( c

2

)2
+m2 − cm cosφ.

But cosφ = − cos θ. Adding gets rid of the cosine terms and gives the result

m2 =
a2 + b2

2
−

c2

4
.

The idea also works if M divides AB in the ratio p : q instead of 1 : 1.
The formula above is sometimes called the Theorem of Apollonius, after the

great mathematician Apollonius of Perga, born around −260. Apollonius did bril-
liant work on conics. The result about the size of the median is minor, and may
not be due to him.
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III-52. Suppose that PA has slope 2, PB has slope 3, and PA = PB.
What can be said about the slope of AB?

Solution. Move the axes so that the origin ends up at P . The coordinates of A
then have shape (a, 2a) and the coordinates of B have shape (b, 3b). The condition
PA = PB translates as 5a2 = 10b2. Without loss of generality, we can take b = 1,
since the answer doesn’t change under change of scale, or under rotation through
180◦ about P . Thus a = ±

√
2.

The slope of AB is therefore (3 ∓ 2
√
2)/(1 ∓

√
2). That can be simplified to

1∓
√
2.

III-53. A regular octagon is an eight-sided polygon with all sides equal and
all angles equal. Find, exactly, the area of a regular octagon with sides 1.

Figure 3.29: The Area of a Regular Octagon

Solution. Two approaches are illustrated in Figure 3.29. Think of the octagon as
a square with the corners knocked off. Each sliced off corner is an isosceles right
triangle with hypotenuse 1, so each leg has length 1/

√
2. Thus the square has side

1 +
√
2. The corner triangles have combined area 1, either by a computation or

(better!) because they can be assembled into a 1 × 1 square. So the area of the
octagon is (1 +

√
2)2 − 1.

Another way: Start with the same square and fold the corners inwards. The octagon
can now be viewed as four triangles with combined area 1, together with a cross
made up of a central 1× 1 square and four arms that are 1× (1/

√
2) rectangles.

Another way: Join the vertices to the center O of the octagon, splitting the octagon
into eight triangles. Let OAB be such a triangle. Then AB = 1, ∠AOB = 45◦,
and ∠OAB = ∠OBA = 67.5◦.

If h is the perpendicular distance from O to AB, then %OAB has area h/4.
But h = (1/2) tan67.5◦, and now we can use the calculator. To find the exact
answer, compute tan 67.5◦ by using the fact that tan 2θ = 2 tan θ/(1 − tan2 θ). If
θ = 67.5◦, then since tan 2θ = −1, tan2 θ − 2 tan θ − 1 = 0. Now solve for tan θ.

A slower way is to use the more familiar identity cos 2θ = 2 cos2 θ − 1. Or else
OA can be calculated using the Cosine Law: if OA = r, then 12 = 2r2−2r2 cos 45◦.
Then h can be found by using the Pythagorean Theorem. Ugly!
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III-54. Draw the circle of radius 1 with center the origin O. Let A = (1, 0),
and B the point on the top half of the circle such that ∠AOB = 60◦. Put
two red dots distance 1 apart on the edge of a ruler. Slide/swing the ruler
so that it passes through B and one red dot falls on the negative x-axis
while the other falls on the circle. Let the ruler meet the x-axis at X. Find
∠BXO, exactly.

A

B

OX

Y
1

1
1

θ 60◦

Figure 3.30: Trisecting Angles with a Marked Ruler

Solution. Let Y be the red dot where the ruler meets the circle. Because OB and
OY are radii, each has length 1. And XY = 1 because the red dots ended up at X
and Y . Let θ = ∠BXO. We find θ by doing some angle-chasing in Figure 3.30.

Since %XOY is isosceles, ∠XOY = θ. Thus ∠OY X = 180◦−2θ, and therefore
∠OY B = 2θ. Since %BY O is isosceles, ∠OBY = 2θ, and ∠BOX = 180◦− θ− 2θ.
But ∠BOX = 180◦ − 60◦, so 3θ = 60◦ and θ = 20◦.

Comment. The instructions “Slide/swing the ruler . . . ” need to be demonstrated
with a real marked straightedge, since it is an unorthodox use of the ruler. Exactly
the same method can be used to trisect any acute angle, not just the 60◦ angle. The
above construction, which was known to Archimedes and probably earlier, shows
that the general angle can be trisected with compass and marked straightedge.

Since antiquity there have been attempts to trisect the general angle with com-
pass and unmarked straightedge. Finally, in 1837, Wantzel proved that it can’t
be done—Gauss may have proved this in 1800. Wantzel’s result didn’t deter the
armies of angle-trisectors who kept submitting fallacious compass and straightedge
trisections.

III-55. Triangle ABC has perimeter 18, with AB = 8. The bisector of
∠ACB meets AB at D, where AD = 3. Find the length of AC.

Solution. View %ADC and %BDC as having bases AD and BD. Then they have
the same height, so their areas are in the same proportion as their bases, namely
3 : 5.

Let AC = x and BC = y. Reflect %BDC in line CD. Then B is reflected to
some point B′ on the line AC. View %ADC and %B′DC as having bases CA and
CB′ and the same height. So their areas are in the proportion x : y.
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We conclude that x/y = 3/5. But x + y = 10, and therefore x = 10(3/8) =
3.75.

III-56. Reinforcing poles run from six equally spaced points around the
base of a cone-shaped tent to the apex of the tent. The angle between
neighbouring poles is 30◦. Find the ratio of the height of the tent to the
radius of its base.

Solution. Let the base have radius 1; we compute the height h. Let A be the apex
of the tent, and let S and T be points where neighbouring poles meet the base.
Then S and T are consecutive vertices of a hexagon inscribed in a circle of radius
1, so ST = 1.

The length p of a pole can be found by using the Cosine Law on ∠SAT . We
have 1 = p2 + p2 − 2p2(

√
3/2), and therefore p2 = 1/(2 −

√
3) = 2 +

√
3. But by

the Pythagorean Theorem h2 + 12 = p2, so h =
√

1 +
√
3. The ratio of the height

to the radius is about 1.65.

Comment. The tent, with various numbers of reinforcing poles, can be used to
generate accessible questions that require some thought about the geometry. The
numbers here permit an “exact” answer, which is not really appropriate in this
applied context. It may be better to have 7 poles, and a 26◦ angle between poles.

School texts have analogous questions about pyramids. Unfortunately the ideas
used are forgotten, or not learned, and what remains is canned formulas to be used
on tests. Since we seldom bump into pyramids, the formulas have little practical
importance, but ideas always do.

III-57. A triangle ABC with AB = 22, AC = 23, and BC = 24 is cut out
of paper. When the triangle is folded along a line parallel to BC, 64% of
the area of %ABC sticks out beyond BC. Find the length of the fold line.

Solution. The triangle that sticks out is similar to %ABC. Because it has area
0.64 times the area of %ABC, its sides are

√
0.64 times the corresponding sides

of %ABC. Unfold, and label points as in Figure 3.31. Since the line segment RS

A

B

C

P

Q

R

S

Figure 3.31: The Folded Triangle

has length 0.8 times BC, and PQ is equidistant from RS and BC, it follows that
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%APQ has 0.9 times the linear dimensions of %ABC. In particular the fold line
PQ has length 21.6.

III-58. Circles A and B have centers A and B. Each circle has radius 1,
and they are tangent to each other at O. A third circle C of of radius 1
is tangent to AB at O. Find the area of the region which is inside C but
outside A and B.
Solution. Circle C has area π. Remove from this twice the area of overlap between
C and A. These two circles meet at O and at another point X .

A B

X Y

O

Figure 3.32: Three Circles

To find the area in common between A and C, first draw the line segment XO.
That splits the region of overlap into two equal parts. Either part can be viewed
as a quarter-circle with a triangle removed, and so has area π/4 − 1/2. Thus the
region inside C but outside A and B has area π−4(π/4−1/2), that is, 2. Interesting
answer! No π, despite all the curvy bits?

Another way: Using a razor knife, cut out rectangle ABY X . Then cut out the
semicircle XOY . That leaves two pieces, each with two straight sides and a side
which is a quarter-circle. The three pieces can be reassembled to make the shaded
region, so the area of the shaded region is the same as the area of the rectangle,
namely 2.

III-59. A right-angled triangle has legs a and b. Outward facing squares
are erected on the three sides, then string is placed around the whole figure
and drawn tight as in Figure 3.33. Express the area enclosed by the string

a

b

Figure 3.33: A Triangle, Squares, and String

in terms of a and b.
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Solution. The hexagon enclosed by the string is made up of three squares and four
triangles. The areas of the squares are easy: a2, b2, and, by the Pythagorean
Theorem, a2 + b2. The only remaining concern is with the areas of two of the
outer triangles. Let the vertices of the triangle be A, B, and C, with the usual
conventions.

Look at the outer triangle that has A as a vertex. Its area can be computed by
using a formula. But it is more attractive to rotate the triangle clockwise about A
through 90◦ until one of its edges coincides with AB. The rotated triangle has base
b and height a, just like %ABC, so it has area ab/2. Similarly, the outer triangle
that has B as a vertex has area ab/2. The other two triangles are right-angled with
legs a and b, so they also have area ab/2. Add up: The string encloses an area of
2(a2 + ab+ b2) square units.

III-60. Two parallel lines have x-intercepts that differ by 6 and y-intercepts
that differ by 8. Find the distance between the lines.

Solution. Choose a point P on one of the lines. Move the x-axis up or down until
it passes through P , and move the y-axis left or right until it passes through P .
Suppose that the other line meets the new x-axis at Q, and the new y-axis at R.
Then PQ = 6 and PR = 8, for although x-intercepts change, their difference does
not, and the same remark holds for the y-intercepts.

Now drop a perpendicular from P to QR and use similar triangles. Or else note
that by the Pythagorean Theorem, QR = 10, so if h is the perpendicular distance
from P to QR then %PQR has area 5h. But this triangle has area 24, and therefore
h = 24/5.

Comment. It is often strategically useful to move a figure to a better position with
respect to the coordinate axes, or equivalently to move the axes. In the problem
above, though the intercepts change, the distances between them do not, so moving
the axes does not change the geometry.

III-61. One side of a triangle has length 12 and another has length 5. The
angles of the triangle are all less than 90◦. What can be said about the third
side?

Solution. Since 52 + 122 = 132, the converse of the Pythagorean Theorem shows
that the triangle with sides 5, 12, and 13 is right-angled. Imagine that there is a
hinge between the sides 5 and 12, and that the third side z can grow or shrink.

Increase z beyond 13. The angle between the sides 5 and 12 then grows beyond
90◦. So if all angles are to be acute, then z must be less than 13.

Start again with z = 13, and let z shrink. For a while, all angles are acute.
They remain acute until the triangle becomes right-angled again, with hypotenuse
12. If the third side is z0 at that time, then 52 + z20 = 122, so z0 =

√
119. Thus all

angles are acute if and only if
√
119 < z < 13.
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III-62. Let T be a right-angled triangle. An outward facing square S is
erected on the hypotenuse of T . Show that if line ! bisects the right angle
of T , then ! splits S into two equal parts.

Solution. Let T have its right angle at P , and let a and b be the legs of T . In
Figure 3.34, triangle T has been embedded in an (a + b) × (a + b) square PQRS,
in order to make everything as symmetrical as possible.

P Q

RS
a

a

a

a

b

b

b

b

Figure 3.34: Bisecting the Square on the Hypotenuse

The dashed line PR bisects the right angle at P , so it is line ! of the problem.
Use a razor knife to cut the square PQRS into two triangles along the dashed
line, turn %PRS through 180◦, and place it on top of %RPQ. The symmetry
of the diagram shows that now all the lines drawn in %PRS coincide with the
corresponding lines on%RPQ, and therefore the square on the hypotenuse is indeed
bisected. In the absence of a razor knife, note that there is mirror symmetry across
a point mirror at the center of PQRS.

Another way: At the other extreme, it is possible to grind things out in an ugly
but mechanical way. In Figure 3.34, choose P as the origin, and let the other two
vertices of T have coordinates (a, 0) and (0, b). Then the hypotenuse lies along the
line x/a+y/b = 1. Line ! has equation y = x, so ! meets the hypotenuse at a point
whose coordinates are easy to calculate—they happen to be ab/(a+ b).

Now look at the line that passes through (a + b, a) and (b, a + b). This is the
side of the square on the hypotenuse which is parallel to the hypotenuse itself. It
is not hard to find where ! meets this line. Then one can show that the square on
the hypotenuse is bisected by computing two distances.

III-63. A farmer grows Christmas trees in an 80 meter by 80 meter field.
Any two trees must be at least 2 meters apart, and the trees must be planted
in rows parallel to one of the edges of the field. About how many trees can
be planted?

Solution. The rows should not be 2 meters apart. It is significantly more efficient
to arrange the trees to form equilateral triangles with side 2 meters. The height of
an equilateral triangle of side 2 is 2 sin 60◦, so the rows can be placed

√
3 meters

apart. The farmer can put in 47 rows, since 80/
√
3 is about 46.2. A little playing
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with a sketch shows that 24 of the rows can have 41 trees each and the rest 40,
giving 1904 trees. Putting rows 2 meters apart only allows 1681 trees.

Comment. Questions about optimal packing can be difficult. For example, Kepler’s
Problem about the best way to pack space with equal spheres was only solved very
recently, four hundred years after being posed! Optimal packing is important in the
design of good error-correcting codes for the reliable transmission of information
over “noisy” channels.

III-64. Find the slopes of the straight lines that pass through (0, 5) and are
tangent to the ellipse x2/36 + y2/9 = 1.

Solution. The standard approach uses the differential calculus, but there are other
ways to solve the problem. Let the equation of the line be y = mx + b. The y-
intercept b is equal to 5. To find m, we use the fact that y = mx + 5 meets the
ellipse at exactly one point.

Substitute mx+ 5 for y in the equation of the ellipse and simplify. This yields

(4m2 + 1)x2 + (40m)x+ 64 = 0,

which has one solution if and only if the discriminant is 0, that is, if and only if

(40m)2 − (4)(4m2 + 1)(64) = 0.

Solve for m. It turns out that m = ±2/3. (The problem is symmetrical about the
y-axis, so slopes must come in ± pairs.)

Another way: There is a nicer geometric solution. Imagine that the tangent line
has been drawn. Stretch all distances in the up-down direction by a factor of 2.
The equation of the ellipse is transformed to x2 + y2 = 36.

The tangent line now meets the y-axis at y = 10. Suppose that the point of
tangency is given by x = a, y = b. The equation x2 + y2 = 36 is the equation
of a circle, so the line joining the center of the circle to the point of tangency is
perpendicular to the tangent line.

By using similar triangles, or the fact that slopes of perpendicular lines have
product −1, we find that

b− 10

a
= −

a

b
, that is, a2 + b2 = 10b.

But a2 + b2 = 36, so b = 36/10, and therefore a = ±24/5.
Now undo the stretching by multiplying all lengths in the y direction by 1/2.

The real y-coordinate of the point of tangency is therefore 9/5, while the x-coordinate
is unchanged. The possible slopes of the tangent line turn out to be ±2/3.

Comment. The strategy used in the second solution is sometimes called Transform,
Solve, Transform Back. The slightly unfamiliar ellipse is transformed into a circle
by suitable stretching. Note that tangency is preserved by the stretching, but slope
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is not. The tangent problem is solved for the circle by exploiting special features of
the geometry of the circle, and then the stretching is undone to go back to the world
of the ellipse. For other examples of the strategy in this chapter, see 3 and III-79.

The fact that an ellipse is just a stretched circle has a number of other appli-
cations. For example, it can be used to argue that if a and b are positive, the area
enclosed by the ellipse x2/a2 + y2/b2 = 1 is πab.

III-65. A right-angled triangle has area 1 and perimeter 8. Find the length
of the hypotenuse.

Solution. It is no harder to find the hypotenuse if the area is A and the perimeter
p. We could also ask what combinations of A and p are possible. That is more
difficult: see X-33.

Let x and y be the legs of the triangle. Then

A =
xy

2
and p = x+ y +

√

x2 + y2.

We can find x and y and then
√

x2 + y2, but it is better to preserve symmetry. Let
h be the hypotenuse. Then

(x+ y)2 = h2 + 2xy = h2 + 4A.

But
(x+ y)2 = (p− h)2 = p2 − 2ph+ h2.

Thus h2 + 4A = p2 − 2ph+ h2, and h = (p2 − 4A)/2p.

III-66. A 3cm wide ruler is placed across a 15 cm by 15 cm sheet of paper.
One edge of the ruler passes through a corner of the sheet, and the other

edge of the ruler passes through the diagonally opposite corner. How much
of the sheet is covered by the ruler?

Solution. Let the corners of the sheet, taken counterclockwise, be A, B, C, and D,
and suppose that the edges of the ruler pass through A and C. Let e be the edge
of the ruler that passes through C. We may assume that e meets the line segment
AB, say at P . (If the sheet were not square, there would be two cases to consider.)
Drop a perpendicular from A to e, meeting e at R. Then AR = 3. (Please see
Figure 3.35.)

Let AP = x. By the Pythagorean Theorem, PC =
√

(15− x)2 + 152. By
similarity

x

3
=

√

(15− x)2 + 152

15
.

Square both sides, simplify, and solve: x = 15/4.
The region covered by the ruler is a parallelogram with base 15/4 and height

15, so its area is 1/4 of the area of the sheet.
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A B

CD

P

R

Figure 3.35: The Area Covered by the Ruler

Another way: Use again Figure 3.35. Since AC is the diagonal of a square of side
15, AC = 15

√
2. Let θ = ∠ACR. Then sin θ = 3/(15

√
2).

Now the area of %PBC can be found to great accuracy. The calculator shows
that θ is close to 8.1301◦. Since ∠ACB = 45◦, it follows that ∠PCB is close to
36.8700◦, and therefore 18.7500 is an excellent approximation to PC. To find the
area covered by the ruler, multiply by 3.

Comment. The same methods work for rectangular sheets of paper, and can be
extended to parallelograms.

A calculator was used in the second solution, but the idea can be pushed through
without one. Let φ = ∠PCB. Then φ = 45◦ − θ. By the formula for the cosine of
the difference of two angles,

cosφ =
1√
2
cos θ +

1√
2
sin θ.

But sin θ = 1/(5
√
2) and therefore cos θ = 7/(5

√
2), so cosφ = 2/5.

III-67. An 8.5 by 11 sheet of note paper is folded, and one corner lands on
the diagonally opposite corner. Find the area covered by the folded sheet.

Solution. There is nothing particularly interesting about 8.5 and 11, so let the width
of the paper be w and the height h, with h > w. Label points as in Figure 3.36.
The region covered by the folded sheet can be viewed as %CDQ together with

A B

CD

E
P

Q

Figure 3.36: The Area of a Folded Sheet

quadrilateral PECQ. To find the area of %CDQ, it is enough to find DQ. So let
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DQ = x. Then QC = QA = h−x. By the Pythagorean Theorem, (h−x)2 = b2+x2,
and therefore x = (h2 − b2)/2h. So %CDQ has area b(h2 − b2)/4h.

The quadrilateral PECQ is congruent to PBAQ. But the area of PBAQ is
just half the area of the sheet of paper, that is, bh/2. (To see that PQ bisects the
sheet of paper, draw AC and use symmetry.)

Finally, add and simplify. The region covered by the folded sheet has area
b(3h2 − b2)/4h. If b = 8.5 and h = 11, the area is about 56.17.

III-68. Let ABC be a triangle, and let ! be the line that passes through A
and B. Unless ∠ACB is a right angle, there are two points P , Q on ! such
that ∠CPA = ∠CQB = ∠ACB. Show that

(AC)2 + (BC)2 = (AB)(AP +BQ).

A B

C

P Q
!θθ

Figure 3.37: ibn Qurra’s Generalization of the Pythagorean Theorem

Solution. Let θ = ∠ACB. Figure 3.37 has been drawn with θ obtuse. Be-
cause %ACB and %APC are similar, AC/AP = AB/AC. Similarly, BC/BQ =
AB/BC. Thus

(AC)2 = (AB)(AP ) and (BC)2 = (AB)(BQ).

Add to obtain the desired result.

Comment. If θ is acute, then the positions of P and Q are roughly speaking inter-
changed. Note that P and Q need not lie between A and B.

If θ is a right angle, then P and Q coincide, so (AB)(AP + QB) = (AB)2

and we obtain the Pythagorean Theorem. This generalization of the Pythagorean
Theorem was probably discovered by the ninth-century mathematician Thābit ibn
Qurra.

III-69. Triangle PQR has area 4 square units. Point P has coordinates
(2, 1), and Q has coordinates (3,−2). The third vertex R lies on the x-axis.
Find the coordinates of R.
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Solution. Figure 3.38 makes it clear that there are two possibilities for R. Let X
be the point where PQ meets the x-axis. To find the x-coordinate of X , find the
equation of line PQ, and set y = 0. More efficiently, note that XP has the same
slope as PQ, so if X = (x, 0) then −1/(x−2) = −3, and therefore x = 7/3. Triangle

P

Q

R R
X

Figure 3.38: The Third Vertex of a Triangle

PQR can be cut up into %PXR, which has base XR and height 1, and %QXR,
with base XR and height 2. So %PQR has area (3/2)(XR). But that area is 4,
and therefore XR = 8/3. It follows that the x-coordinate of R is 7/3± 8/3.

III-70. Let S be a square of area 2. The variable point P travels in the
plane of S in such a way that the sum of the squares of the distances from
P to the vertices of S is 6. Identify the path followed by P .

Solution. Place the origin at the center of the square, and the axes so that the
vertices of S are (1, 0), (0, 1), (−1, 0) and (0,−1). Let P = (x, y). The condition
on P translates to

(x− 1)2 + y2 + x2 + (y − 1)2 + (x+ 1)2 + y2 + x2 + (y + 1)2 = 6.

Expand and simplify. We get x2 + y2 = 1/2, the equation of the circle which has
the same center as the square and which is internally tangent to the square.

Comment. The problem can also be solved geometrically, but there is no good
reason to do so. The problem has obvious symmetry about the center of the square,
so if we guess that the answer is a circle, it is easy to see which circle it is. But it
is not clear that the answer should be a circle. If for example “sum of squares of
distances” is replaced by “sum of distances,”’ then the geometry may feel similar,
but the curve is definitely not a circle.

Let A1, A2, . . . , An be points in the plane, and let a1, a2, . . . , an, and k be
real numbers. A point P moves in the plane of the Ai in such a way that

a1(PA1)
2 + a2(PA2)

2 + · · ·+ an(PAn)
2 = k.

In general, the path traced by P is a circle, but in degenerate cases the path may
be empty, or a single point, or a line. Analytic geometry makes the proof easy.
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Remarkably enough, this result was proved around −200 by the great mathe-
matician Apollonius, more than 1800 years before the birth of analytic geometry.
It is one of 147 theorems in the lost work Plane Loci. We only know about these
theorems because Pappus (300?) commented on some of them.

III-71. Show that the circles

(x− a)2 + (y − b)2 = 2a2 and (x− b)2 + (y + a)2 = 2b2

meet at right angles.

Solution. Let P and Q be the centers of the circles. So P = (a, b) and Q = (b,−a).
Let R be an intersection point of the circles. What is meant by the angle between
the two circles at R? A sensible interpretation is that it is the angle between the
tangent lines at R. The tangent line to a circle at R is perpendicular to the diameter
through R. It is therefore enough to show that ∠PRQ = 90◦. Note that

(PQ)2 = (a− b)2 + (b+ a)2 = 2a2 + 2b2 = (RP )2 + (RQ)2.

By the converse of the Pythagorean Theorem ∠PRQ = 90◦. Thus if the circles
meet, they do so at right angles. To check that they meet, we can compute the
intersection points explicitly. It is better to note that PQ is greater than either
radius, but less than the sum of the radii, so the circles do meet.

III-72. The rectangle ABCD in Figure 3.39 has AB = 3 and BC = 4.
Find the area of rectangle BPQD.

A

B C

D

P

Q

Figure 3.39: A Rectangle on the Diagonal of a Rectangle

Solution. By the Pythagorean Theorem, BD = 5. Let h = BP . Note that %BPC
is similar to %DCB. It follows that h/4 = 3/5. So h = 12/5, and therefore the
area is 12.

Is it a coincidence that the area of ABCD is also 12? In general let AB = m
and BC = n. Then BD =

√
m2 + n2. The similarity argument of the preceding

paragraph shows that h/n = m/
√
m2 + n2. It follows that h = mn/

√
m2 + n2, and

therefore the area of BPQD is mn, which is also the area of ABCD.
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Another way: The result can be proved without computation. Use a razor knife
to cut out %CQD, and slide the triangle to the left until CD coincides with BA.
Since ∠DCQ = ∠ABD, it follows that CQ now runs along BD.

Cut out %BPC and slide it upwards until BC coincides with AD. Now %ABD
is covered without overlap by the cut out pieces. Thus BPQD can be dissected
into three pieces that can be reassembled to form ABCD, and therefore the two
rectangles have equal areas.

Comment. More complicated-looking problems that use the same ideas can be gen-
erated by starting with a parallelogram ABCD.

III-73. The circle C0 has center (0, 1) and radius 1. Let F be the family of
all circles that are tangent both to C0 and to the x-axis, and whose centers
do not lie on the y-axis. What kind of curve is swept out by the centers of
the circles in F?

Solution. An informal sketch shows that the centers lie on a curve that looks
roughly like a parabola. Many curves that look like parabolas are not, but this
one will turn out to be a parabola.

Let C be a circle with center (x, y), where x (= 0. A sketch shows that if y ≤ 0,
then C can’t be simultaneously tangent to the x-axis and to C0. So we may assume
that y > 0. Then C is tangent to the x-axis if and only if it has radius y.

Suppose now that C has center (x, y) and radius y, and that x (= 0. A sketch
shows that C is tangent to C0 if and only if the distance from the center of C to
the center of C0 is 1 + y, or equivalently

√

(x− 0)2 + (y − 1)2 = 1 + y.

Square both sides and simplify. We get x2 = 4y, the equation of a standard
parabola. Not quite. Since y > 0, the vertex is missing.

Another way: Let C0 be a circle with center A and radius r, and let !0 be a line
tangent to C0 at the point O. Let S be the family of circles that are tangent to
both !0 and C0, but not at O. We want to identify the curve swept out by the
centers of circles in S.

Let ! be the line which is at distance r from !0, but on the other side of !0 from
C0. Then P is the center of a circle tangent to !0 and to C0 (but not at O) if and
only if P is equidistant from A and !, and P (= O.

The classical definition of a parabola is that it is the curve swept out by a
particle that travels so as to remain equidistant from a fixed point, the focus, and
a fixed line, the directrix. So without coordinates, and in a somewhat more general
setting, we can conclude that our curve is a parabola.

III-74. A farmer wants to divide the trapezoidal field of Figure 3.40 equally
between two children, using a line PQ parallel to the southern boundary AB
of the field. Given that AB is 50 meters long, BC = 90, CD = 32, and BC
is perpendicular to AB, how should the division be done?
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A B

CD

PQ

Figure 3.40: Dividing the Trapezoidal Field

Solution. Drop a perpendicular from the northwest corner of the field to the south-
ern edge. That divides the field into a triangle T with area 9 · 90 and a rectangle
R with area 32 · 90. Each child should therefore receive 1845 square meters.

The division will be completely specified once the length w of CP is known.
By a scaling argument, the part of T above PQ has area (w/90)2(9 · 90), that is,
w2/10. The part of R above PQ has area 32w, and therefore

w2

10
+ 32w = 1845.

The positive root of the above equation is about 49.88. So the division point P
should be 49.88 meters away from C along the line segment CB.

Another way: A similar calculation can be done using coordinates. Since the first
quadrant is the most comfortable part of the plane, it would be nice to have the
northern boundary at the bottom, and the eastern boundary along the y-axis. So
rotate the map through 180◦.

The corners are then (0, 0), (32, 0), (50, 90), and (90, 0). The line joining (32, 0)
and (50, 90) has equation y = 5(x − 32). Let the division line be y = w. This line
meets y = 5(x− 32) at x = 32 + w/5.

By the standard formula for the area of a trapezoid, the area of the part of the
field below y = w is (32 + 32 + w/5)(w/2). Set this equal to 1845, half the area of
the field, and simplify. That gives the equation w2 + 320w− 18450 = 0, which has
positive root close to 49.88. The division line is about 49.88 meters south of the
northern edge of the farm.

Another way: The last argument is harder but more geometric. Extend AD and
BC until they meet at a point O. Let k be the area of %ODC. There is no need
to calculate k, indeed there is good reason not to: this approach works even if AB
and BD are not perpendicular.

By similarity, %OAB has area (50/32)2k, so the field has area ((50/32)2− 1)k.
Divide by 2 and add k to find the area of %OQP . The ratio of the areas of %OQP
and %ODC is therefore ((50/32)2 + 1)/2.

We conclude that OP is OC multiplied by the scale factor s, where s =
√

((50/32)2 + 1)/2. But OB is OC multiplied by the scale factor 50/32, and there-
fore

CP : 90 = s− 1 :
50

32
− 1.
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Calculate: CP is about 49.88. The farmer should walk 49.88 meters from C toward
B.

Comments. 1. This problem is adapted from Qin Jiushao’s thirteenth century
work Shushu jiuzhang (Nine Sections of Mathematics). In the original, the unit of
measure is not the meter, the division is into three equal parts, and the children
are sons.

In the coordinate geometry solution, it was convenient to turn the map upside
down. If we had used the diagram that accompanies Qin Jiushao’s original problem,
there would be no need to do that: in old Chinese maps, North is at the bottom.

2. The first solution can be modified to show that the assumption that BC is
perpendicular to AB is unnecessary. Let θ be the angle between AB and BC.
Instead of dropping a perpendicular from D to AB, draw a line through D parallel
to BC. Suppose that P is reached by walking distance w from C along CB. Every
area obtained in the first solution should be multiplied by sin θ, which then cancels
out!

3. It is said that one of the Ptolemies asked Euclid for an easy way to solve
geometrical problems, and Euclid replied “There is no royal road to geometry.”
Exactly the same story is told of Alexander the Great and Menaechmus. Both
stories are almost certainly apocryphal—it can be unhealthy to dis a king. And
in fact there is a royal road to geometry, the method of coordinates developed by
Fermat, Descartes, and others in the seventeenth century.

III-75. The sum of the squares of the diagonals of a parallelogram is 40.
Find the possible values of the sum of the squares of the four sides.

Solution. Suppose that parallelogramABCD has sides p and q, and let ∠ABC = θ.
The square of the diagonal AC is p2 + q2 − 2pq cos θ, by the Cosine Law. But
∠DAB = π− θ, and therefore the square of the diagonal BD is p2 + q2 +2pq cos θ.
Add. The sum of the squares of AC and BD is 2p2 + 2q2, exactly the same as the
sum of the squares of the sides.

Comment. Let two sticks AC and BD be pinned together into a rough cross at
the middle of AC (the pin needn’t be at the middle of BD). As the angle between
the sticks is varied, the lengths of AB, BC, CD, DA change, but the sum of their
squares does not. To prove this, let O be where the sticks meet, do four Cosine
Law calculations using the angles at O, and add.

III-76. One meter from a wall and parallel to it is a one meter high fence.
How high up the wall can a six-meter ladder reach if the bottom of the
ladder must be outside the fence?

Solution. When the highest point is reached, the ladder touches the fence. Let y
be the height achieved, and x the distance from the wall to the foot of the ladder.
A similar triangles argument shows that (y− 1)/1 = 1/(x− 1), that is, xy = x+ y.
By the Pythagorean Theorem, x2 + y2 = 36.
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If only an approximate answer is desired, note that x = y/(y − 1). Substitute
for x in x2 + y2 = 36. The resulting equation in y can be solved approximately
with the Solve button on the calculator, or even by graphing.

For an exact solution, add 2xy−2(x+y), namely 0, to both sides of x2+y2 = 36
and simplify. The resulting equation

(x+ y)2 − 2(x+ y)− 36 = 0

has the solution x+ y = 1 +
√
37.

For simplicity, write a for 1 +
√
37. Then x2 − 2xy + y2 = 36− 2a, so x− y =

−
√
36− 2a. (The negative sign is used because x < y.) Finally,

y =

√
36 + 2a+

√
36− 2a

2
.

The expression
√
36 + 2a is equal to a, but the formula for y looks nicer the way it

is written. The height reached is about 5.88.

Comment. This is an old standard. If the distance of the fence from the wall is
different from the height of the fence, the analysis starts in the same way, but
the system of equations is more difficult to solve exactly. There is a formula for
the roots of fourth degree equations, due to the sixteenth century mathematician
Ferrari, and improved by, among others, Euler, but the formula is cumbersome. In
the days before calculators, problems that didn’t have simple closed form answers
were avoided.

III-77. The isosceles triangle ABC has two sides of length 10, while BC
has length 16. The point P inside the triangle is at perpendicular distance
2 from each of AB and BC. Find the perpendicular distance from P to AC

Solution. There are complicated ways of proceeding, but there is also an elegant,
symmetrical way. Together, the triangles APB, BPC, and CPA make up, without
overlap, all of %ABC.

Using the Pythagorean Theorem, we find that the perpendicular distance from
A to BC is 6, and therefore %ABC has area 48. Since %APB has base 10 and
height 2, it has area 10. Similarly, %BPC has area 16. So %CPA has area 22.
Since %CPA has base 10, the perpendicular distance from P to AC is 44/10.

Comment. The same sort of area argument shows that if %ABC is equilateral and
P is a point inside the triangle, then the sum of the perpendicular distances from
P to the sides of the triangle is independent of the location of P . This is sometimes
called Viviani’s Theorem.

III-78. The quadrilateral Q has diagonals of length 3 and 4 that meet inside
Q at an angle of 60◦. Find the area of Q.
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Solution. There are infinitely many quadrilaterals that meet the specifications. The
wording of the problem seems to imply that they all have the same area. So we
could “cheat” by making the diagonals bisect each other. But maybe the problem
was carelessly worded.

Let the vertices of Q, taken counterclockwise, be A, B, C, and D, and let the
diagonals meet at P . Let a = AP , b = BP , c = CP , and d = DP , and suppose
that AC = 4 and BD = 3. Then a+ c = 4 and b+ d = 3.

The area of %APB is (ab/2) sin 60◦. Since sin 120◦ = sin 60◦, the area of
%BPC is (bc/2) sin 60◦. There are similar expressions for the other two triangles
around P .

The sum of the areas of the triangles is (ab+ bc+ cd+ da)
√
3/4. But ab+ bc+

cd+ da = (a+ c)(b + d) = 12, so Q has area 3
√
3.

Comment. Take two sticks, pinned and glued so as to form an angle θ, and make
a kite with these sticks as cross-bracing. Then the area of the kite depends only on
the lengths of the sticks and the angle θ, and not on the location of the pin.

III-79. Without using the calculus, find the slope of the tangent line to the
curve y = 1/x at the point (2, 1/2).

Solution. The line with slope m through (2, 1/2) has equation

y −
1

2
= m(x− 2).

To find the x-coordinate of the point(s) where this line meets the curve y = 1/x,
substitute 1/x for y. After a while, we get the equation

2mx2 + (1− 4m)x− 2 = 0.

A sketch shows that m (= 0, and that there are two distinct roots except when
there is tangency. We can solve the equation using the quadratic formula, or more
simply note that the quadratic factors as

(2mx+ 1)(x− 2).

The two roots coincide if m = −1/4, so the tangent line has slope −1/4.

Another way: Stretch the graph of y = 1/x in the y-direction by a factor of 4. So
the point (2, 1/2) turns into the point (2, 2), and the hyperbola becomes xy = 4.
By symmetry, the tangent line to this hyperbola at (2, 2) has slope −1. Finally,
divide y-coordinates by 4 to undo the stretching. This divides slopes by 4, so the
tangent line has slope −1/4.

Comments. 1. The second solution is another instance of the problem-solving tech-
nique called Transform, Solve, Transform Back. For other examples in this chapter,
see 3 and III-64.
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2. See III-39 for a calculation of the slopes of tangent lines to y = x2. A more
challenging but still accessible problem is to find the tangent line to y = x3 or
y = x4 at x = a.

3. By the middle of the seventeenth century (and before the conventional beginning
of calculus) both Fermat and Descartes had generalized the first method and had
found ways to calculate slopes of tangent lines to curves P (x, y) = 0, where P (x, y)
is any polynomial.

III-80. Triangle ABC has AB = 6, AC = 12, and ∠BAC = 100◦. Let the
bisector of ∠BAC meet BC at D. Find the length of AD, rounded to 4
decimal places.

Solution. Recall that if a triangle has two legs of length p and q, and the angle
between them is θ, then the area of the triangle is (pq/2) sin θ. Thus the area of
%ABC is 36 sin 100◦.

Let t be the length of AD. The area of %ABC is 3t sin 50◦, and the area of
%ACD is 6t sin 50◦. Thus

36 sin 100◦ = 3t sin 50◦ + 6t sin 50◦.

Solve for t. It is marginally helpful to use the fact that sin 100◦ = 2 sin 50◦ cos 50◦.
So t = 8 cos 50◦. The calculator says that this is about 5.1423. (Essentially the
same idea is used in III-55.) If AB = p, AC = q, and ∠BAC = 2θ, then AD =
pq cos θ/(p+ q).

III-81. The point X is inside a rectangle, at distances 4, 7, and 8 from
three of the corners. How far is P from the fourth corner?

Solution. It may look as if there isn’t enough information to solve the problem,
since the size of the rectangle is not given. There is in fact not enough information,
but the size of the rectangle isn’t needed!

In Problem III-30, it is shown by introducing coordinates that if P , Q, R, and
S are consecutive vertices of a rectangle, and X is any point, and p, q, r, and s are
the distances of X from P , Q, R, and S, then p2 + r2 = q2 + s2.

In the current problem, we may assume that p = 4. There are now three
geometrically distinct cases: (i) r = 7; (ii) r = 8; and (iii) r is neither 7 nor 8.

Let d be the distance to the fourth point. In case (i), 42 + 72 = 82 + d2, so
d = 1. In case (ii), d =

√
31, while in case (iii), d =

√
97.

III-82. A sphere S of radius 1 sits on the ground touching a wall perpen-
dicular to the ground. Find the largest sphere that can pass through the
gap between S and the wall.

Solution. Let O be the center of S, and P the point where S touches the wall. Let
) be the plane through P that is perpendicular both to the wall and to the ground.
We can confine attention to ).
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Let Q be the point where the wall, the ground, and ) meet. Then OQ =√
2. Let C be the location of the center of the small sphere as that center passes

though ), and let r be the radius of the small sphere. Then CQ = r
√
2, and√

2 = 1 + r + r
√
2. It follows that

r =

√
2− 1√
2 + 1

= 3− 2
√
2.

III-83. A circular frying pan is placed, base down, into a cupboard. The top
edge of the pan touches the back wall and the left side wall. The diameter
of the base of the pan is 4 cm less than the diameter of the outside top. A
certain point on the edge of the base is 27 cm from the back wall and 10 cm
from the left wall. Find the diameter of the base.

Figure 3.41: The Frying Pan

Solution. The plane of the cupboard shelf meets the left wall and the back wall
in two lines, which are respectively chosen as the x and the y axes. Let the outer
diameter of the top of the pan be 2r. Then the center of the base has coordinates
(r, r), and the outside edge of the base has equation (x−r)2+(y−r)2 = (r−2)2. A
certain point on the circumference of the base has coordinates (27, 10). Substitute
in the preceding equation and simplify. We obtain r2 − 70r + 825 = 0. Solve: It
turns out that r = 15 or r = 55. The value r = 55 arises if the point on the base is
the one nearer the cupboard corner in Figure 3.41. But pans with diameter over 1
meter aren’t put into cupboards. The base has diameter 26 cm.

III-84. Triangle ABC has AB = 11 and AC = 13. The median that joins
A to the midpoint of BC has length 10. Find the area of the triangle.

Solution. Let the median meet BC at M , and let BC = 2d. Let θ = ∠AMB.
View %ABC as having base BC. Its height is then 10 sin θ, so its area is 10d sin θ.

The cosine of ∠AMC is − cos θ, so by the Cosine Law

112 = 102 + d2 − 20d cos θ and 132 = 102 + d2 + 20d cos θ.
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Add and subtract. It turns out that d2 = 45 and d cos θ = 48/40. Thus

d sin θ =
√

d2 − d2 cos2 θ =
33

5
,

so the area is 66.

III-85. A 4 meter long cylindrical water tank of radius 1m lies on its side
on level ground. The maximum depth of water in the tank is measured by
dipping a stick into the tank. This depth is 0.25m. How much water is in
the tank?

Solution. Draw a circle with center O and radius 1, and a horizontal line 0.75 units
below O, as in Figure 3.42. Let P and Q be the points where the line meets the
circle.

O

P Q

Figure 3.42: The Cylindrical Tank

Let θ be the angle that the (short) arc between P and Q subtends at O. Then
θ is twice the angle whose cosine is 0.75. The calculator says that θ is about 82.8◦.
So the area of the pizza wedge OPQ is about (82.8/360)π. To find the area of
%OPQ, use the fact that it is (1/2) sin θ, or find (PQ)/2 using the Pythagorean
Theorem.

Subtract the area of the triangle from the area of the pizza wedge, then multiply
by 4 to find how much water is in the tank. The answer is about 0.9 cubic meters.

III-86. Alicia is looking through binoculars as a distant ship sails away.
Her eyes are 10 meters above sea level, and the ship’s smokestack is 40m
above sea level. How far away is the tip of the smokestack at the instant
that it disappears from view? Assume that the Earth is a sphere of radius
6400 kilometers.

Solution. In Figure 3.43, E marks Alicia’s eyes, and S is the tip of the smokestack
at the instant it disappears from view. The line ES is tangent to the surface of the
Earth, T is the point of tangency, and C is the center of the Earth. We need to
find ET + TS.

By the Pythagorean Theorem, (ET )2+(CT )2 = (EC)2. But EC = 6400+0.01,
and therefore

(ET )2 = (2)(6400)(0.01) + (0.01)2.
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CE

S

T

Figure 3.43: The Distance to the Horizon

The second term in the sum is negligible in comparison with the first, so for all
practical purposes ET =

√

(6400)(0.02). Similarly, TS is about
√

(6400)(0.08).
We conclude that ES is about 34 kilometers.

Comment. Discarding the term (0.01)2 in the calculation of ET makes a difference
of less than 5 millimeters! There are much larger sources of error, including uncer-
tainties about the size of the Earth, the fact that it is not spherical, and diffraction
effects.

III-87. A circular sector has a 60◦ central angle and radius 1. Find the
radius of the largest circle that fits into this sector.

A

B

C

O
P

Figure 3.44: The Largest Circle in a Sector

Solution. Label points as in Figure 3.44. The largest circle that fits has center at a
point C on the line that bisects ∠AOB. Let OC = x. The required circle touches
the arc that joins A and B, so it has radius 1− x. The circle also touches OA and
OB.

The radial line CP is perpendicular to OA. Since ∠COP = 30◦, the length
of CP is x/2, so the radius of the circle is x/2. It follows that 1 − x = x/2, and
therefore x = 2/3.
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III-88. A circular hole of radius r is cut out of a horizontal plane, and a
sphere of radius R > r is placed on the hole. The bottom of the sphere ends
up distance h below the level of the plane. Express R in terms of r and h.

B

C

O

P Q

Figure 3.45: The Spherometer

Solution. Draw a plane through the center O of the sphere and the center C of the
hole, and label points as in Figure 3.45.

From the fact that CB = h, we obtain OC = R−h. The Pythagorean Theorem
applied to %OPC gives

r2 = R2 − (R− h)2 = 2Rh− h2.

Thus R = (r2 + h2)/2h.

Comment. Imagine a precision instrument built like a tiny three-legged stool. The
legs of the stool end in sharp points that form an equilateral triangle whose cir-
cumradius r is accurately known. A ratcheted screw goes down from the center of
the seat of the stool.

To find the radius of curvature R of a convex lens, an optical worker places the
points of the instrument, called a spherometer, on the lens, and turns the screw
until it just meets the lens. The distance h by which the center of the lens sticks up
from the plane of the three points is read off. For a picture, just turn Figure 3.45
upside down.

Finally, R is computed by using the formula just obtained. (Many old spherom-
eters gave a direct readout of 1/R by using an ingenious linkage. Nowadays that’s
handled by a microprocessor.)

III-89. A piece of salami is shaped like a cylinder of radius 2 cm. Slice the
salami so that the knife makes an angle of 36◦ with the central axis of the
salami. Find the area of cross-section of the slices. Hint: Slice the salami
thinly and stack the slices.

Solution. Take a piece of salami of length !, slice a big piece off at 36◦ to the central
axis, and glue it to the other end to make a salami with parallel end faces at 36◦

to the central axis.
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Slice the glued salami very thinly parallel to the new ends, and stack the pieces,
lining them up so that the bottoms of the slices lie vertically above each other.
If a slice has thickness t in a direction parallel to the central axis, then it has
perpendicular height t cos 36◦. It follows that the stack has height ! cos 36◦.

Let the area of cross-section be A. If the slices are extremely thin, then the
stack is almost a generalized cylinder, with an oval base of area A and height
! cos 36◦. Thus 4π! = A! cos 36◦, and therefore A = 4π sec 36◦, about 15.5 square
centimeters.

Comments. 1. It so happens that cos 36◦ = (
√
5 + 1)/4, but it is unreasonable to

seek an “exact” answer to a problem about salami.

2. Around 1640, before the discovery of the integral calculus, Cavalieri used
ingenious slicing arguments to find areas and volumes. The idea goes back to
Archimedes, who used a slicing argument to find the volume of the part of a sphere
on one side of a plane.

3. In the salami problem, the cross-section is elliptical. So the problem can be
solved by producing or looking up a formula for the area of an ellipse. That idea
can be turned around, and we can use salami slicing to find a formula for the area
of an ellipse.

III-90. The sides of a triangle are in geometric progression. Find all possible
values of the ratio of the largest side to the smallest side.

Solution. The smallest side can be taken to be 1. Then the other two sides are r
and r2 for some r ≥ 1. Three positive numbers are the sides of a triangle if and
only if the sum of any two is greater than the third. In this case, the condition
reduces to r2 < r + 1.

Note that r2− r− 1 = (r−a)(r− b), where a = (1−
√
5)/2 and b = (1+

√
5)/2.

Thus r2 − r − 1 < 0 if and only if a < r < b. It follows that a necessary and
sufficient condition on r is 1 ≤ r < (1 +

√
5)/2. The question asked for conditions

on r2. They are 1 ≤ r2 < (3 +
√
5)/2.

III-91. An old lighthouse is 30 meters high. How tall should it be in order
to be visible from twice as far? Assume that Earth is a sphere of radius
6400 kilometers, and that the viewer’s eye is at sea level.

Solution. Twice as far as what? We can interpret distance as (i) line of sight
distance from the viewer to the top of the lighthouse or (ii) distance along the
Earth’s surface to the base of the lighthouse—this is the usual interpretation. We
can even imagine burrowing through the Earth. We solve the problem under both
interpretations.

Compute first under interpretation (i). Let L be the top of the lighthouse, V
the position of the viewer, and C the center of the Earth. For a picture, look at
Figure 3.43.

Note that ∠CV L is a right angle. It is useful to work with symbols than
numbers. Let R be the radius of the Earth, and h the height of a lighthouse. By
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the Pythagorean Theorem, (V L)2 = (R + h)2 − R2. Thus V L =
√
2Rh+ h2. For

the old lighthouse, h = 0.03. The calculator gives V L = 19.595941.
The h2 term is very small compared to 2Rh. If we throw h2 away, we obtain

instead V L = 19.595918—throwing away h2 makes no practical difference.
Let h be the height required to double V L. We want 1536.0324 = 2Rh + h2.

The quadratic formula gives

h =
−12800 +

√

(12800)2 + 6144.1296

2
.

Plugging into the calculator could produce catastrophic rounding error, since we
are subtracting two large nearly equal numbers. But in this case things turn out
OK, barely.

It is easier, safer, and essentially as accurate to use the approximate formula
V L =

√
2Rh. To double

√
2Rh we must multiply h by 4, so the new height of the

lighthouse should be about 120 meters.
Compute now under interpretation (ii), measuring distances along the surface

of the water to the base B of the lighthouse. The cosine of ∠BCV is 6400/6400.03.
The calculator says that ∠BCV is about 0.003061856 radians. For the new light-
house, this angle must be doubled, so the new cosine should be about 0.99998125.
If h is the new height, then R/(R + h) = 0.99998125. The calculator gives
h = 0.120001408. (The last few digits can’t be trusted.)

The answer is almost the same as under interpretation (i). Note that the
maximum line of sight distance V L to the old lighthouse is 19.595941 and the
corresponding water level distance V B is 19.5958784. Locally, the Earth, or at
least the surface of a calm sea, is flat.

Comment. The eleventh-century Central Asian Islamic astronomer al-Bı̄rūn̄ı found
the height h of a mountain that rose steeply at the edge of a large plain. He then
found the distance d from the mountain to the point in the plain where the top
of the mountain disappeared from sight, and used the relationship d =

√
2Rh to

estimate the radius of the Earth.

III-92. Let A, B, C, and D be consecutive vertices of a regular hexagon
with edge length 1. A ruler that has two red dots on its edge, distance 1
apart, is placed so that the ruler passes through A, and one dot ends up on
BD while the other ends up on BC (extended). Let X be the point where
BD meets the ruler. Find the length of AX exactly.

Solution. Please see Figure 3.46. There, Y is the point where the ruler meets the
line BC, and O is the center of the hexagon. By symmetry, O is the midpoint of
AD, and AD is parallel to BC. Since %OAB is equilateral, AD = 2.

By properties of parallel lines, ∠ADX = ∠Y BX , so %ADX and %Y BX are
similar. Let a = AX and b = BY . By similarity, 2/a = b/1.
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A

BC

D
O

X

Y

Figure 3.46: Duplicating the Cube with Marked Ruler

Now focus attention on %ABY . Since ∠ABY = 120◦, the Cosine Law yields

(a+ 1)2 = 12 + b2 + b.

When we substitute 2/a for b and simplify, we obtain

a4 + 2a3 − 2a− 4 = 0, that is, (a+ 2)(a3 − 2) = 0.

Thus a = 3
√
2.

Comment. The result gives a way of “duplicating the cube” with a compass and a
marked straightedge. In 1837, Wantzel proved that the cube cannot be duplicated
with compass and unmarked straightedge.

The task of constructing a cube with volume twice that of a given one—or
equivalently, constructing a length 3

√
2—is a famous problem that goes back to

Greek antiquity. The story is told that during a plague, the Delos oracle told the
Delians that the plague would end if they constructed a new altar to Apollo with
twice the volume of the previous one.

Archimedes (circa −250) probably knew that the cube can be duplicated with
compass and marked straightedge. The above construction is a streamlined variant
of constructions given by Viète and later by Newton.

III-93. On March 21, Alfonso and Beti were doing a science experiment
as the sun set over the coast of Ecuador. Alfonso was standing 50 meters
above sea level, and Beti was on a cliff 50 meters above Alfonso.

At the instant that Alfonso saw the sun dip below the horizon, he sig-
nalled Beti, who found with a stopwatch that the sun dipped below her

horizon 22.5 seconds after it dipped below Alfonso’s. Find the radius of the
Earth.

Solution. The geometry is developed in the solutions of III-86 and III-91 where it
is shown that if R is the radius of the Earth, then for someone at reasonable height
h above sea level the distance to the horizon is very close to

√
2Rh. Line of sight

distance and distance along the surface of the Earth are the same for all practical
purposes.
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Let R be measured in kilometers. For convenience, let a be the height of Alfonso
above sea level, b the height of Beti, and t the elapsed time shown by the stopwatch.

The distance to Alfonso’s horizon is about
√
2aR, while the distance to Beti’s

is
√
2bR. The Earth goes through one revolution every 24 hours, so points at the

equator travel at 2πR/(24 · 3600) kilometers per second. It took Earth t seconds to
travel

√
2bR−

√
2aR, so

(
√
2bR−

√
2aR)(24 · 3600)
2πR

= t

and therefore

R =
(
√
2b−

√
2a)2(24 · 3600)2

4π2t2
.

Calculate. To the nearest kilometer, the result is 6408.

Comment. The answer is suspiciously close to the true value. Alfonso and Beti
didn’t feel like doing all that climbing, so they obtained the 22.5 seconds by working
backwards from the known value of R. The horizon method has some built-in
inaccuracies, but a ball-park estimate of R could be obtained in this way.

III-94. One corner of a box is O, and the three neighbouring corners are
A, B, and C. Let a be the area of %BOC, b the area of %COA, c the area
of %AOB, and d the area of %ABC. Show that a2 + b2 + c2 = d2.

Solution. Let p = OA, q = OB, and r = OC. By the Pythagorean Theorem, the
squares of the sides of %ABC are q2 + r2, r2 + p2, and p2 + q2.

There are elegant ways to find d2 without breaking symmetry. We do it crudely
by finding one of the heights of %ABC. Drop a perpendicular from A to the point
P on BC. Let h = AP and x = BD. The Pythagorean Theorem applied to %ABP
gives

h2 + x2 = p2 + q2.

A similar calculation with %ACP gives

h2 + (
√

q2 + r2 − x)2 = p2 + r2.

If we subtract, we get a linear equation for x. It turns out that

x =
q2

√

q2 + r2
,

and therefore

h2 =
q2r2 + r2p2 + p2q2

q2 + r2
.

We conclude that d2 = (q2r2 + r2p2 + p2q2)/4. But qr = 2a, pr = 2b, and
pq = 2c, so d2 = a2 + b2 + c2.

Comment. The above result is one of the several possible generalizations of the
Pythagorean Theorem to three dimensions. Numerical versions of the problem are
more accessible.



Chapter 4

Equations and Inequalities

Introduction

Most of these problems read “find the solutions of” such and such an explic-
itly given equation or system of equations, or find all numbers that satisfy
a given inequality. The equations do not involve trigonometric functions,
which are saved for Chapter 5.

Many of the equations have obvious symmetries and these symmetries
are exploited in the solution. Basic facts about polynomials are often needed,
such as the Remainder Theorem (the remainder when P (x) is divided by
(x−a) is P (a), and consequently (x−a) divides P (x) if and only if P (a) = 0).

Several of the problems are most simply solved by “rationalizing” a nu-
merator, and for others it is useful to know about the discriminant of a
quadratic.

Several of the solutions use the relationship between the coefficients of a
polynomial and certain symmetric functions of its roots. In particular, one
needs to know that if α and β are the roots of x2 + px+ q = 0, then since
(x−α)(x−β) is the same polynomial as x2+px+q, it follows that α+β = −p
and αβ = q. Similarly, if α, β, and γ are the roots of x3 + px2 + qx+ r = 0
then α+β+γ = −p, βγ+αγ+αβ = q and αβγ = −r, and so on for higher
degree polynomials.

Problem IV-69 deals with the solutions of the cubic, and could form the
beginnings of an exploration. Problem IV-81 deals with the square roots
of a complex number. It can made to lead to important ideas, such as
de Moivre’s formula.

122
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Problems and Solutions

IV-1. Factor x(y − z)3 + y(z − x)3 + z(x− y)3.

Solution. Don’t expand! Call our expression A(x, y, z). First think of A as a
polynomial P (x) in x, with parameters y and z. Note that P (y) = 0, so by the
Factor Theorem x − y divides P (x), that is, x − y divides A. Similarly, y − z and
z − x divide A. It follows that

A(x, y, z) = (x− y)(y − z)(z − x)Q(x, y, z)

for some polynomial Q in the variables x, y, and z. All the terms of A have degree 4,
and therefore Q is of degree 1, meaning that

Q(x, y, z) = k(x+ y + z)

for some constant k. There are various ways to find k. For example, put x = 0,
y = 1, and z = 2. Then

(x − y)(y − z)(z − x)k(x+ y + z) = 6k but A(0, 1, 2) = 6,

so k = 1. Or else compare say coefficients of yx3 (−1 for A, and −k in the factored
expression).

Comment. There are many possible questions based on the same idea. The key
is to use an expression A(x, y, z) that doesn’t change when (x, y, z) is replaced
by (z, x, y), that is, when each variable is pushed forward by one position, with
wraparound.

IV-2. Solve for x: a(x2 + 2) = x(a2 + 2).

Solution. We can manipulate and quickly find the answer. But it can’t hurt to
look first. It is obvious from the symmetry that one solution is x = a. If a = 0,
that’s all there is. If a (= 0, we have a quadratic whose constant term is twice the
coefficient of x2, so the product of the roots is 2 and therefore the other solution is
x = 1/2a.

IV-3. Find all solutions of the system x2 + y2 = 1, x3 + y3 = 1.

Solution. It is tempting to begin to manipulate, maybe by eliminating y. We have
y2 = 1− x2 and y3 = 1− x3, and therefore

(1 − x2)3 = (1− x3)2.

Expand and simplify. After a while we arrive at the answer. It is probably better
to keep symmetry and write

(x2 + y2)3 = (x3 + y3)2.
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This simplifies to 3x2y2(x2 + y2) − 2x2y2(xy) = 0. If neither x nor y is 0, then
2xy = 3. But then x2 − 2xy + y2 = −1, which is impossible. Or else we can
substitute 3/(2x) for y in the equation x2 + y2 = 1, and after some manipulation
arrive at 4x4 − 4x2 + 9 = 0, a quadratic in x2 with no real solutions.

Another way: The system has the obvious solutions x = 1, y = 0 and x = 0, y = 1.
If neither x nor y is 1, then from x2 + y2 = 1 we conclude that |x| < 1 and |y| < 1.
But then |x3| and |y3| are “too small.” More formally, |x3| < x2 and |y3| < y2, and
therefore |x3|+ |y3| < 1, so x3 + y3 (= 1.

IV-4. Let α, β, and γ be the solutions of x3 − 3x+ 1 = 0. Find

(2α− 1)(2β − 1)(2γ − 1).

Solution. By sketching y = x3 − 3x + 1, or otherwise, we can see that the given
equation has three real roots. If the problem came up in a practical setting, we
could use a graphing program, or some other method, to produce good numerical
estimates of the roots, and use these estimates to calculate an approximate answer.
But we can also find an exact answer.

Expand the given expression. We obtain

8(αβγ)− 4(αβ + βγ + γα) + 2(α+ β + γ)− 1.

Note that
x3 − 3x+ 1 = (x− α)(x − β)(x − γ).

By expanding the right-hand side, and comparing terms, we find that α+β+γ = 0,
αβ + βγ + γα = −3, and αβγ = −1. Substitute. We conclude that our expression
is equal to 3.

Another way: Let f(x) = x3 − 3x+ 1. Then f(1/2) = −3/8. But

f(1/2) = (1/2− α)(1/2− β)(1/2− γ).

Multiply both sides by −8. We conclude that (2α− 1)(2β − 1)(2γ − 1) = 3.

Comment. We could instead use the ideas of IV-69 or V-37 to find exact expressions
for the roots of the cubic, but that approach is much more complicated.

In general, expanding like we did in the first solution isn’t a good idea, since
it makes things look more complicated. But in this case the terms α + β + γ,
αβ + βγ + γα, and αβγ that turn up can be read off from the coefficients of
x3 − 3x+ 1.

IV-5. If x is a real number, the fractional part of x is defined to be x−)x*,
where )x* is the largest integer less than or equal to x. Denote the fractional
part of x by {x}. How many solutions does the equation {x2} = {4x} have
in the interval 0 ≤ x ≤ 10?
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Solution. Let f(x) = x2 − 4x. Then {x2} = {4x} if and only if f(x) is an integer.
With some effort, we can now use a graph of y = x2 − 4x to count the number of
values of x between 0 and 10 for which f(x) is an integer.

It is easier to imagine graphing. Note that f(x) = (x− 2)2 − 4. As x increases
from 0 to 2, f(x) decreases from 0 to −4, so f(x) takes on integer values at 5 values
of x in the interval 0 ≤ x ≤ 2. As x increases from 2 to 10, f(x) increases from −4
to 60, so f(x) takes on integer values at 64 values of x in the interval 2 < x ≤ 10.
Thus our equation has 69 solutions in the interval 0 ≤ x ≤ 10.

IV-6. Find the real numbers a such that the solutions of

x4 − 2x3 + x2 − a2 = 0

are all real.

Solution. Rewrite the equation as

(x(x − 1))2 = a2, or equivalently x(x − 1) = ±|a|.

The roots of x2 − x − |a| = 0 are real for any a, since the discriminant 1 + 4|a| is
always positive. The roots of x2−x+ |a| = 0 are real if and only if the discriminant
1− 4|a| is non-negative. That is true when −1/4 ≤ a ≤ 1/4.

IV-7. Find all real numbers k such that one solution of the equation x2 −
2kx+ 4 = 0 is the cube of the other.

Solution. The solutions are k ±
√
k2 − 4. Which is to be the cube of which? Re-

placing k by −k turns one possibility into the other, so we neeed only look at

(

k +
√

k2 − 4
)3

= k −
√

k2 − 4.

Should we expand and solve? Maybe it won’t turn out as ugly as it’s beginning
to look. But one should resist the urge to expand, for expanding often destroys
structure. Instead, multiply both sides by k +

√
k2 − 4 (it is clear that this can’t

be 0). We obtain
(

k +
√

k2 − 4
)4

= 4,

so k +
√
k2 − 4 = λ, where λ is one of

√
2, −

√
2,

√
−2, or −

√
−2. But since k is

real, the last two are impossible.
Now multiply both sides by k −

√
k2 − 4, then divide by λ. We obtain k −√

k2 − 4 = ±2
√
2. “Add” k +

√
k2 − 4 = ±

√
2 to this equation. We conclude that

k = ±3
√
2/2.

Another way: Let the roots be r and r3. The product of the roots is equal to
the constant term of the polynomial. Thus r4 = 4, and therefore r = ±

√
2 or

r = ±
√
−2.
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If r = ±
√
2, then r3 = ±2

√
2. The sum of the roots is 2k, and therefore

2k = ±(
√
2 + 2

√
2)

so k = ±3
√
2/2.

If r = ±
√
−2, then r3 = ∓2

√
−2. But then the sum of the two roots is not a

real number, contradicting the fact that k is real.

Comment. There is a version of the first approach that uses trigonometric identities.
Let k = 2 sec θ. Since 1 + tan2 θ = sec2 θ, our equation can be rewritten

8(sec θ + tan θ)3 = 2(sec θ − tan θ).

Now we can use trigonometric identities to arrive at the answer. “Trigonometric
substitutions” can be a handy way to get rid of square roots.

IV-8. Let f(x) = x2 + 2x− 1. Solve the equation f(f(x)) = f(x).

Solution. Calculating f(f(x))− f(x) is a strategic error. The original problem has
structure. Expanding hides that structure, and produces a fourth degree equation
whose roots are not at all obvious.

Rewrite our equation as (f(x))2 + 2f(x) − 1 = f(x), and use the quadratic
formula to solve for f(x). We conclude that the equation holds at x if and only if

f(x) =
−1±

√
5

2
.

Now solve the quadratic equations

x2 + 2x− 1 =
−1 +

√
5

2
and x2 + 2x− 1 =

−1−
√
5

2
.

We can add 2 to both sides, making the left-hand side into a perfect square. Or
more clumsily we can use the quadratic formula. The roots are

−1±

√

3 +
√
5

2
and − 1±

√

3−
√
5

2
.

These expressions simplify considerably if we notice that (1±
√
5)2 = 6±2

√
5. But

the structure comes out more clearly if we solve the problem

Another way: Suppose that f(x) = x. Apply the function f to both sides. We
conclude that f(f(x) = f(x). So any solution of f(x) = x is a solution of our
equation. The equation f(x) = x can be rewritten as x2 + x− 1 = 0, whose roots
are (−1±

√
5)/2.

To find the other two roots of f(f(x) = f(x), note that f(x) = (x+1)2−2, and
therefore f(−x− 2) = f(x) for any x. Thus if f(x) = −x− 2 then f(f(x)) = f(x).
Now solve the equation x2 + 2x− 1 = −x− 2. The roots are (−3±

√
5)/2.
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Comment. Both techniques work for any quadratic polynomial f(x). If f is any
function, a solution of f(x) = x is called a fixed point of f . Fixed points are useful
in many areas of mathematics.

IV-9. Find all real numbers x that satisfy the inequalities

x < x3 < x4 < x2.

Solution. There are solutions! We can use a graphing program to graph the curves
y = x, y = x3, y = x4, and y = x2, and read off the answer from the screen.
But the curves are so simple that we can probably learn more from a hand-drawn
sketch. We can also solve the problem without pictures as follows.

Since x2 is non-negative, x4 < x2 precisely if 0 < x2 < 1. But if 0 < x < 1,
then x > x3. So the only possibilities left are −1 < x < 0. They work.

IV-10. Given that loga x = 4 and logb x = −5, find logab x.

Solution. The equation loga x = 4 is equivalent to x = a4. Since xmust be positive,
it follows that a = x1/4. Similarly, b = x−1/5, and therefore ab = x1/4x−1/5 = x1/20.
Thus x = (ab)20, and therefore logab x = 20.

Another way: We can use the change of base formula

logq x =
logp x

logp q
.

Convert all logarithms to some convenient common base p. Then

loga x =
logp x

logp a
= 4 and logb x =

logp x

logp b
= −5.

Rewrite the equations as

logp a

logp x
=

1

4
and

logp b

logp x
= −

1

5
.

Add, and use the fact that logp a+ logp b = logp ab. We conclude that

logp ab

logp x
=

1

20
.

Using again the change of base formula, we get logab x = 20.

Comment. The second approach is unattractive. It depends on a change of base
formula that has to be established or remembered, and it is longer and much uglier.
The first approach is more conceptual, for it only uses the all-important relationship
between exponential functions and logarithms.
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IV-11. Find a function f such that f(xy) + f(x)f(y) + x+ y is identically
equal to 2.

Solution. Suppose that f(xy)+f(x)f(y)+x+y = 2 for all x and y. Set x = y = 0;
then f2(0) + f(0)− 2 = 0. The quadratic formula (or factoring) yields f(0) = −2
or f(0) = 1.

Suppose first that f(0) = −2. Set y = 0, leaving x free to roam. Then
−2 − 2f(x) + x = 2, and therefore f(x) = x/2 − 2 for all x. Let’s check whether
this works by substituting back in the original equation. It doesn’t.

So suppose now that f(0) = 1. Again set y = 0. Then 1 + f(x) + x = 2, and
therefore f(x) = 1− x for all x. This works, for (1 − xy) + (1 − x)(1 − y) + x + y
is identically equal to 2.

IV-12. Find three numbers in geometric progression whose sum is 2 and
the sum of whose squares is 8.

Solution. It is natural to let the numbers be a, ar, and ar2. That works just fine,
but it is more attractive to let them be x, y, and z, with y the middle one. Since
the numbers are in geometric progression, xz = y2.

We were told that

x+ y + z = 2 and x2 + y2 + z2 = 8.

Square both sides of the first equation. We obtain

x2 + y2 + z2 + 2(xy + xz + yz) = 4.

Now use the second equation to conclude that xy + xz + yz = −2. Since xz = y2,
we can rewrite this as y(x+ y + z) = −2. It follows that y = −1.

Since y = −1, the first equation yields x+ z = 3. Note that xz = y2 = 1. Thus
x and z are the roots of u2 − 3u+1 = 0. These roots are (3±

√
5)/2, and x can be

either one of them, and z is the other.

Comment. The same problem, with sum 20 and sum of squares 140, can be found
in Isaac Newton’s Universal Arithmetic (late seventeenth century).

IV-13. Let P (x) = (x − 1)(x)(x + 1) − (a − 1)(a)(a + 1). Find all real
numbers a such that P (x) = 0 has three distinct real solutions.

Solution. The equation has the obvious solution x = a. To find the other solutions,
note that

P (x) = (x3 − x)− (a3 − a) = (x3 − a3)− (x− a)

= (x − a)(x2 + ax+ a2 − 1).

We want the quadratic equation x2+ax+a2−1 = 0 to have distinct real solutions.
That happens when the discriminant a2−4(a2−1) is positive, that is, for −2/

√
3 <

a < 2/
√
3.
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All roots should be distinct, so we also need

−a±
√
4− 3a2

2
(= a.

There is equality only when ±
√
4− 3a2 = 3a. This equation reduces to 12a2 = 4,

which has the solutions a = ±1/
√
3. It follows that P (x) = 0 has distinct real roots

for any a in the interval −2/
√
3 < a < 2/

√
3 except for a = ±1/

√
3.

Comment. The product of the roots of P (x) = 0 is (a− 1)(a)(a + 1), so the roots
other than a have product (a − 1)(a + 1). Also, in P (x) the coefficient of x2 is 0,
so the sum of the roots is 0, and therefore the sum of the roots other than a is −a.
It follows that the roots other than a satisfy the equation x2 + ax+ a2 − 1 = 0. In
the main solution this result was obtained by factoring.

IV-14. A cardboard box of the usual shape has sides of area 720 cm2,
1000 cm2, and 1250 cm2. Find the volume of the box.

Solution. Let the edge lengths be a, b, and c. We know their products in pairs.
With suitable labelling bc = 720, ca = 1000, and ab = 1250. Multiply. We get
(abc)2 = 720 · 1000 · 1250, and therefore abc = 30000.

Comment. The calculation exploits the fact that volume is symmetric in a, b, and
c. In general, one should be reluctant to “break symmetry.” Most students set up
the equations, use elimination to find say a, then calculate b and c, and finally find
the product. This approach works, but it is inelegant and therefore inefficient.

In a problems workshop, a student who had done well in mathematics compe-
titions was still working on the problem, fingers flying over the calculator, when
some others had finished. It turned out that he expected a, b, and c to be integers,
and was using “guess and test” to find them!

IV-15. For what k does the system

x2 − y2 = 0; (x− k)2 + y2 = 1

have (i) no solutions; (ii) one solution; (iii) two solutions; (iv) three solutions;
(v) four solutions?

Solution. If we rewrite the first equation as (x − y)(x + y) = 0, we can see that
it is the equation of a “curve” made up of the familiar lines y = x and y = −x.
The second equation is the equation of the circle with center (k, 0) and radius 1.
We take advantage of symmetry by looking at the case k ≥ 0 and then reflecting
across the y-axis. Any rough sketch shows that there are four solutions if k = 0.
As k increases, the circle moves to the right. When the circle passes through the
origin (k = 1), the number of solutions drops to three. It jumps immediately back
to four, stays at four until the circle becomes tangent to y = x, when the number of
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Figure 4.1: The Curves x2 − y2 = 0 and (x− k)2 + y2 = 1

solutions drops to two. By the Pythagorean Theorem, that happens when k =
√
2.

And after that there are no solutions.
So there are no solutions when |k| >

√
2, two solutions when |k| =

√
2, three

when |k| = 1, and four when |k| < 1 and also when 1 < |k| <
√
2.

Another way: The problem has strong geometric content, so it ought to be done
geometrically. But it can be handled using only algebra. Use the two given equa-
tions to eliminate y2. We obtain 2x2−2kx+k2−1 = 0. This has no roots when the
discriminant 8−4k2 is negative, that is, when |k| >

√
2. If |k| =

√
2, then x = 1/

√
2

and y = ±1/
√
2, so the original problem has two solutions. When |k| <

√
2, there

are two possible values of x, and hence four solutions, except if one value of x is 0
(k = ±1), when there are only three solutions.

IV-16. Find a function f such that f(f(f(f(x)))) is identically equal to
4x+ 1.

Solution. Look for a solution of the form f(x) = ax+ b. Then

f(f(x)) = a(ax+ b) = a2x+ ab+ b.

Keep on computing. After a while we get

f(f(f(f(x)))) = a4x+ a3b+ a2b+ ab+ b.

We need to have a4 = 4. That’s easy to arrange: just let a =
√
2. With this choice

of a, we need (2
√
2 + 2 +

√
2 + 1)b = 1, so let b = (

√
2− 1)/3.

Comment. The problem and solution may look like “algebra,” but the motivation
is geometric. The transformation that takes x to 4x+1 can be thought of as scaling
by a factor of 4, then shifting by 1. We want to express this transformation as the
result of applying a certain transformation 4 times. It is natural to try to scale by
some factor a and shift by some b. The scale factor a = 4

√
4 jumps out, although

− 4
√
4 is also reasonable (scaling by 4

√
4 followed by a reflection).
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IV-17. Find all real numbers x and y such that

1

x
+

1

y
= 3 and

1

x2
+

1

y2
= 11.

Solution. The fractions are intimidating, so let u = 1/x and v = 1/y. The equations
become u + v = 3 and u2 + v2 = 11. If we substitute 3 − u for v in u2 + v2 = 11,
we obtain a quadratic equation for u, and the rest is routine.

More symmetrically, let u = 1.5+ t and v = 1.5− t. Then u2+v2 = 11 becomes
4.5 + 2t2 = 11, and the rest is easy.

Or else use the fact that

u2 − 2uv + v2 = 2(u2 + v2)− (u+ v)2 = 13

to conclude that u− v = ±
√
13. Thus

u =
3±

√
13

2
and v =

3∓
√
13

2
.

Invert and simplify: x = (−3±
√
13)/2 and y = (−3∓

√
13)/2.

IV-18. Find all real numbers x and y such that

3x2 + 6xy + 2y2 = 4 and 5xy + 3y2 = 8.

Solution. We can use a computer program to graph the curves (they are hyperbolas)
with these equations and read off the solutions, at least approximately. But there
is an algebraic approach that gives an exact answer.

There seem to be no interesting symmetries to exploit, so we get rid of the
constant term to get a homogeneous equation. If the given equations hold, then

2(3x2 + 6xy + 2y2)− (5xy + 3y2) = 0,

or equivalently y2 + 7xy + 6x2 = 0. By the quadratic formula, or by factoring, we
find that y = −x or y = −6x.

Replace y by −x in the equation 5xy + 3y2 = 8. We get −2x2 = 8, which has
no real solutions. Replace y by −6x in 5xy+3y2 = 8. We get 78x2 = 8. That gives
the (possible) solutions x = 2/

√
39, y = −6/

√
39 and x = −2/

√
39, y = 6/

√
39.

We should check that these answers really work, for two reasons, one practical—
errors in arithmetic are always possible—and the other logical. We have only
shown that if (x, y) is a solution, then (x, y) can’t be anything other than our
two candidates. In general, that doesn’t imply that the candidates satisfy the
equations. (In this problem it is easy to show that the implications are reversible:
if y2 + 7xy + 6x2 = 0 and 5xy + 3y2 = 8, then 3x2 + 6xy + 2y2 = 4.)

IV-19. Find all solutions of the inequality

1

x− 1
+

1

x+ 1
≥

1

3
.
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Solution. We will—carefully— clear denominators by multiplying both sides of the
inequality by 3(x− 1)(x+ 1),

Suppose first that −1 < x < 1. Then (x − 1)(x + 1) < 0 and we obtain the
inequality 3(x+1)+ 3(x− 1) ≤ (x− 1)(x+1), which simplifies to x2 − 6x− 1 ≥ 0.
The polynomial x2−6x−1 is 0 at x = 3±

√
10 and it is negative only between these

roots. Thus in the interval (−1, 1) the inequality holds only when −1 < x < 3−
√
10.

Suppose now that |x| > 1. Then (x−1)(x+1) > 0, and we obtain the inequality
x2−6x−1 ≤ 0. So when |x| > 1 the inequality only holds when 1 < x ≤ 3+

√
10.

Comment. It is all too easy to make errors when handling inequalities. A graphing
calculator or a graphing program can be useful. Graph the curve y = 1/(x− 1) +
1/(x+ 1) and determine approximately where this curve lies above y = 1/3. Then
find the boundary points exactly by solving a quadratic equation.

IV-20. Find all real numbers x such that

x2

x+ 1
+

x+ 1

x2
=

25

12
.

Solution. The second term is the reciprocal of the first, so let w = x2/(x+1). Then
w + 1/w = 25/12, or equivalently 12w2 − 25w + 12 = 0. Solve using the quadratic
formula or in some other way. We get w = 3/4 or w = 4/3.

Rewrite x2/(x + 1) = 3/4 as 4x2 − 3x − 3 = 0. This has the solutions x =
(

3±
√
57
)

/8. The equation x2/(x+1) = 4/3 has solutions x = −2/3 and x = 2.

IV-21. Let f(x) = |x−1|− |x−2|+ |x−4|. Find all c such that the equation
f(x) = c has exactly three solutions.

Solution. Sketch the curve y = f(x). If x ≤ 1, then |x− 1| = 1− x, |x− 2| = 2− x,
and |x−4| = 4−x, and therefore f(x) = −x+3. If 1 ≤ x ≤ 2, then |x−1| = x−1,
|x − 2| = 2 − x, and |x − 4| = 4 − x, and therefore f(x) = x + 1. Similarly, if
2 ≤ x ≤ 4, then f(x) = −x+ 5, and if x ≥ 4 then f(x) = x − 3. Figure 4.2 shows
the graph of y = f(x). Now read off the answer from the picture. The equation

1 2 3 4

Figure 4.2: An Absolute Value Graph

f(x) = c has three solutions if c = f(1) = 2 and if c = f(2) = 3.
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IV-22. Let a, b, and c be all different. Solve the equation

a2(x− b)(x− c)

(a− b)(b− c)
+

b2(x− c)(x− a)

(b− c)(b− a)
+

c2(x− a)(x− b)

(c− a)(c − b)
= x2.

Solution. We could simplify. That takes effort and a little luck, for there are many
− signs, and many chances to err. Instead, imagine simplifying. We would get
something of the shape px2 + qx+ r = 0.

By looking at the equation as given, we can see that x = a, x = b, and x = c are
solutions. But a quadratic equation has no more than two solutions, and a linear
equation has only one, so the equation must simplify to 0x2 + 0x + 0 = 0. The
equation holds for any x.

IV-23. Find all real numbers x such that (x− 1)4 + (x− 3)4 = 56.

Solution. Bring out the symmetry by letting y = x − 2. The equation becomes
(y + 1)4 + (y − 1)4 = 56.

Expand. Note that (y + 1)4 = y4 + 4y3 + 6y2 + 4y + 1, while (y − 1)4 =
y4 − 4y3 + 6y2 − 4y + 1. Add and simplify. We get y4 + 6y2 − 27 = 0. This is
a quadratic in y2. Solve, either with the quadratic formula or by noting that the
equation can be rewritten as (y2 − 3)(y2 + 9) = 0. Since y2 can’t be negative,
y = ±

√
3, and therefore x = 2±

√
3.

IV-24. Find all solutions of the system

x2(x2 + 1) = y2(y2 + 1) = z2(z2 + 1) = 4xyz.

Solution. If, for example, |x| > |y|, then x2(x2 + 1) > y2(y2 + 1). So x, y, and z
must all have the same absolute value.

Look first for non-negative solutions. Then x = y = z = t for some t ≥ 0, where
t2(t2 +1) = 4t3. This has the obvious solution t = 0. If t (= 0, then t2 − 4t+1 = 0,
and therefore t = 2±

√
3.

If one of x, y, or z is negative, then exactly two must be, since 4xyz must
be positive. Thus each positive solution (t, t, t) gives birth to the three additional
solutions (t,−t,−t), (−t, t,−t), and (−t,−t, t). There are therefore exactly 9 solu-
tions.

IV-25. Find all polynomials P (x) such that (x−4)P (2x) is identically equal
to (8x− 4)P (x).

Solution. The condition holds if P (x) is identically 0. Now look for other solutions.
Let P (x) have degree n. So the leading term of P (x) has shape axn for some

non-zero constant a. The leading term of (x − 4)P (2x) is then (2na)xn+1, while
the leading term of (8x− 4)P (x) is (8a)xn+1. Thus 2na = 8a and therefore n = 3.

We identify P (x) by studying the roots of P (x) = 0. Note that (x−4)P (2x) = 0
when x = 4. Since (x− 4)P (2x) is identically equal to (8x− 4)P (x), it follows that
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P (4) = 0. But then P (2x) = 0 when x = 2, and therefore P (2) = 0. And because
P (2x) = 0 when x = 1, it follows that P (1) = 0. Since P (x) is a cubic, there are
no other roots.

So P (x) must be of the form a(x−1)(x−2)(x−4) for some constant a. Finally,
we must check that if P (x) = a(x−1)(x−2)(x−4), then (x−4)P (2x) is identically
equal to (8x− 4)P (x). This is easy.

IV-26. Show that if x and y are real and not both 0, then

(a) x2 + xy + y2 > 0; (b) x4 + x3y + x2y2 + xy3 + y4 > 0.

Solution. (a) By completing the square, we get

x2 + xy + y2 =
(

x+
y

2

)2
+

3y2

4
.

Since x2 + xy + y2 is a sum of two squares, it is positive unless both squares are
equal to 0. But if x + y/2 = 0 and y = 0, then x must be 0. We conclude that
x2 + xy + y2 is positive unless x and y are both 0.

(b) The result is obvious if x and y are both ≥ 0, and also if they are both ≤ 0.
Because our expression is symmetric in x and y, we may without loss of generality
assume that |x| ≥ |y|. We may also assume that x > 0. For if x = 0, then y = 0.
And if x < 0, we can replace x and y by −x and −y without changing the value of
x4 + x3y + x2y2 + xy3 + y4.

Group the terms as follows:

(x4 + x3y) + (x2y2 + xy3) + y4.

The first group is equal to x3(x + y). Since x is positive and |x| ≥ |y|, we have
x+ y ≥ 0, so the first group is ≥ 0, and is > 0 unless y = −x. The same idea works
for the second group. So our expression is always ≥ 0, and is only 0 if y = 0 and
y = −x, that is, if x = y = 0.

Another way: Without loss of generality we may take x ≥ y. If x = y the result is
obvious, so suppose that x > y. Then x5 > y5. Now use the identity

(x − y)(x4 + x3y + x2y2 + xy3 + y4) = x5 − y5.

Since x5 − y5 and x− y are positive, so is x4 + x3y + x2y2 + xy3 + y4.

Comment. The arguments used in part (b) also work for part (a). The same
arguments show that if n is a positive integer, then

x2n + x2n−1y + x2n−2y2 + · · ·+ xy2n−1 + y2n > 0

unless x = y = 0.
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IV-27. Find all real numbers x and y such that

x+ y = 10; and

(

x

y

)2

−
(y

x

)2
= 2.

Solution. Let x/y = w. The second equation can be rewritten as w2 − 1/w2 = 2,
or equivalently w4 − 2w2 − 1 = 0. This is a quadratic in w2. Since w2 can’t be

negative, we conclude that w2 = 1 +
√
2, and therefore w = ±

√

1 +
√
2.

Divide both sides of x+ y = 10 by y. So x/y + 1 = 10/y and therefore

y =
10

1±
√

1 +
√
2
.

Finally, multiply by ±
√

1 +
√
2 to find x.

Comment. This is one of the sixty-nine solved problems in the Algebra of abū Kāmil
(ninth century). Many of abū Kāmil’s problems were borrowed without attribution
by Leonardo of Pisa (“Fibonacci,” early thirteenth century). But then again, abū
Kāmil borrowed freely from al-Khwārizmı̄, the mathematician whose book title
al-jabr wa-l-muqābala mutated into the word algebra.

The fact that one of the equations in the system is x + y = 10 continues a
tradition that goes back to Diophantus of Alexandria. What algebraists really
meant to do is to use x + y = a, where a is a fixed but arbitrary number (a
parameter). But appropriate notation didn’t exist, so they had to pretend that
they were dealing with specific numbers. That went on for many centuries and
only ended around 1600 with the work of Viète.

IV-28. Is there a function f such that f(x)+ xf(1− x) is identically equal
to 1?

Solution. Suppose that f(x)+xf(1−x) = 1 for all x. Substitute 1−x everywhere
for x. Since 1− (1− x) = x, we get f(1− x) + (1− x)f(x) = 1. that is, f(1− x) =
1− (1 − x)f(x).

Substitute 1 − (1 − x)f(x) for f(1 − x) in the main equation. We obtain
f(x) + x(1 − (1− x)f(x)) = 1. Now solve for f(x) and simplify:

f(x) =
1− x

1− x+ x2
.

Note that f(x) is defined for all x, since 1− x+ x2 is never 0. And

f(1− x) =
1− (1− x)

1− (1 − x)− (1− x)2
=

x

1− x+ x2
,

so f(x) + xf(1 − x) is indeed identically equal to 1.
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IV-29. Let P (x) = x11+ cx2− cx− 1. Find all c such that P (x) is divisible
by (x− 1)2.

Solution. We could divide P (x) by x2−2x+1, using ordinary polynomial division.
The remainder turns out to be (11 + c)x− (11 + c). We want this remainder to be
identically 0. That forces c = −11. The division process isn’t hard, but there is a
simpler way.

Since P (1) = 0, by the Factor Theorem P (x) is divisible by x− 1 for any c. We
can find an explicit expression for the quotient Q(x).

P (x) = (x11 − 1) + cx(x − 1) = (x− 1)
(

(x10 + x9 + · · ·+ x+ 1) + cx
)

and therefore Q(x) = (x10 + x9 + · · ·+ x+ 1) + cx. But Q(x) is divisible by x− 1
if and only if Q(1) = 0, that is, if and only if 11 + c = 0. Thus −11 is the only c
for which P (x) is divisible by (x− 1)2.

Comment. Let P (x) be any polynomial. It can be shown that (x−a)2 divides P (x)
if and only if P (a) = 0 and P ′(a) = 0, where P ′(x) is the derivative of P (x). In
our problem, a = 1, P (1) = 0, and P ′(x) = 11x10 + 2cx − c. From P ′(1) = 0 we
conclude that c = −11.

IV-30. Solve the equation x4 + 1 = 4x(x2 + 1).

Solution. We use a trick based on the fact that x2 +1/x2 is (almost) the square of
x + 1/x. Since 0 is not a solution, we divide both sides of our equation by x2 and
obtain the equivalent equation

x2 +
1

x2
= 4

(

x+
1

x

)

.

Let w = x + 1/x. Then x2 + 1/x2 = w2 − 2, and the equation can be written as
w2 − 2 = 4w. By the quadratic formula, w = 2±

√
6.

Now solve x+ 1/x = 2±
√
6, or equivalently

x2 − (2 +
√
6)x + 1 = 0 and x2 − (2 −

√
6)x+ 1 = 0.

(The solutions of the second equation aren’t real.)

IV-31. If x is a real number, the fractional part of x is defined to be x−)x*,
where )x* is the largest integer less than or equal to x. Denote the fractional
part of x by {x}. Find the largest real number x < 1 such that

{x}+
{

1

x

}

= 1.
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Solution. First look for a solution in the interval 1/2 < x < 1. Then 1/x lies
strictly between 1 and 2, and therefore {1/x} = 1/x − 1. So we want to solve
x+ 1/x− 1 = 1. This equation simplifies to (x− 1)2 = 0, which has no solution in
our interval.

Now let x travel downward from 1/2 toward 1/3. Then {1/x} climbs from 0
toward 1, while {x} falls from 1/2 to 1/3. So they must meet somewhere between
1/2 and 1/3.

Let x be the solution. Then {x} = x and {1/x} = 1/x− 2, so x+ 1/x− 2 = 1,
or equivalently x2 − 3x+ 1 = 0, and therefore x = (3−

√
5)/2.

IV-32. Find all real numbers x and y such that

x2 + xy + x = 1 and y2 + xy + y = 2.

Solution. Rewrite the equations as

x(x + y + 1) = 1 and y(x+ y + 1) = 2,

then “divide” the second equation by the first. We conclude that y = 2x. If we
substitute for 2x for y in the first equation, we find that 3x2 + x − 1 = 0, and
therefore x = (−1 ±

√
13)/6. So x = (−1 +

√
13)/6 and y = (−1 +

√
13)/3 or

x = (−1−
√
13)/6 and y = (−1−

√
13)/3

IV-33. For what values of the parameter c does the equation

(x− 32)10 + (x− 34)10 = c

have a real solution?

Solution. The symmetry comes out more clearly if we let w = x−33. The equation
becomes

(w − 1)10 + (w + 1)10 = c.

Imagine expanding each term on the left-hand side. When we expand (w + 1)10,
we get an expression of the form

w10 + a1w
9 + · · ·+ a9w + 1,

where the constants a1, a2, and so on are positive. The ai can be computed by
using the Binomial Theorem, but there is no need to do that.

When we expand (w − 1)10, we get

w10 − a1w
9 + · · ·− a9w + 1.

Add. The result is
2w10 + 2a2w

8 + · · ·+ 2a8w
2 + 2.

This expression is 2 when w = 0, greater than 2 when w (= 0, and can be made
arbitrarily large by making |w| sufficiently large. So the original equation has a real
solution for any c ≥ 2.
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Comment. If we plot y = (x−32)10+(x−34)10 using the right viewing window, we
can spot the minimum value of y. A viewing window centered on x = 0 is useless.

IV-34. A circle meets the parabola y = x2 at four points. The x-coordinates
of three of the points are 2, 3, and 4. Find the x-coordinate of the fourth
point.

Solution. A natural approach is to suppose that the circle has center (a, b) and
radius r, and calculate these three numbers. The circle has equation

(x− a)2 + (y − b)2 = r2.

The circle passes through (2, 4), (3, 9), and (4, 16) and therefore

(2− a)2 + (4− b)2 = r2; (3 − a)2 + (9 − b)2 = r2; (4 − a)2 + (16− b)2 = r2.

If we “subtract” the second equation from the first and simplify, we get a+5b = 35.
If we subtract the third from the second, we get a + 7b = 91. Solve. It turns out
that b = 28, a = −105, and therefore r2 = 12025.

The circle turns out to have equation

x2 + y2 + 210x− 56y − 216 = 0.

Substitute x2 for y. We obtain

x4 − 55x2 + 210x− 216 = 0.

Three of the roots of this equation are known, so it is easy to find the fourth. A
complicated way of doing it is to divide the polynomial successively by x− 2, x− 3,
and x − 4. It is much easier to note that the coefficient of x3 is 0, and therefore
the sum of the roots is 0. Since three of them are known, and their sum is 9, the
fourth must be −9.

Another way: Almost all of the calculations were unnecessary! The circle has
equation of the shape (x − a)2 + (y − b)2 = r2. We don’t need to know a, b and
r. Imagine substituting x2 for y in the above equation. We get an equation of the
form P (x) = 0, where P (x) is a polynomial of degree 4 and the coefficient of x3 is
0. It follows that the sum of the roots of P (x) is 0, so if we know three roots we
can easily find the fourth.

IV-35. Find all solutions of the system

u+ v + w = 1

1

u
+

1

v
+

1

w
= 1.
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Solution. Note that none of u, v, or w can be 0. As long as we remember that, we
can replace the second equation by

vw + uw + uv = uvw.

Whatever u, v, and w may be, they are the roots of the cubic equation

(x− u)(x− v)(x − w) = 0,

which expanded becomes

x3 − (u + v + w)x2 + (vw + uw + uv)x− uvw = 0.

Let p = uvw. So u, v, and w are the roots of

x3 − x2 + px− p = 0.

Note that 1 is a root of this equation. So at least one of u, v, or w is 1. For now
suppose that u = 1. Substituting in the original equations, we obtain v + w = 0,
and 1/v + 1/w = 0. The solutions of this system are v = t, w = −t, where t is any
non-zero real.

It follows that the solutions (u, v, w) of the original system are all triples of the
form (1, t,−t), (−t, 1, t), or (t,−t, 1), where t (= 0.

IV-36. Let P = (0, 1), and Q = (−b, c). The line segment PQ is a diameter
of a certain circle. Where does that circle meet the x-axis?

Solution. The center of the circle is the midpoint of the segment PQ, namely the
point with coordinates (−b/2, (c+ 1)/2). The square of the radius of the circle is
(

b2 + (c− 1)2
)

/4. Thus the circle has equation

(

x+
b

2

)2

+

(

y −
c+ 1

2

)2

=
b2 + (c− 1)2

4
.

The circle crosses the x-axis at the point (or points) where y = 0. In the equation
of the circle, multiply through by 4, set y equal to 0, simplify, and solve for x. We
obtain

(2x+ b)2 = b2 − 4c, that is, x =
−b±

√
b2 − 4c

2
.

If b2− 4c is negative, there is no x-intercept. If b2− 4c = 0, there is only one, while
if b2 − 4c > 0 there are two.

Comment. The problem shows how to solve x2 + bx + c = 0 geometrically. For
given the numbers b, and c, we can construct the points P and Q with straightedge
and compass, and then construct the circle of the problem. We end up with a
straightedge and compass construction of the roots of the equation.

IV-37. Find all real numbers x such that 4x = 2x
2

/16.
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Solution. Take the logarithms of both sides—any base will do, but 2 is best. We
have log2 4

x = log2 2
2x = 2x, and log2(2

x2

/16) = x2 − 4. So our equation holds if
and only if 2x = x2 − 4, that is, when x = 1±

√
5.

IV-38. Find a formula F (x, y) that uses only basic arithmetical operations
and square root such that F (x, y) is always the larger of x and y. How about
a formula G(x, y, z) such that G(x, y, z) is the largest of x, y, and z? Use
the convention that

√
u is the non-negative number whose square is u.

Solution. Let F (x, y) =
(

x+ y+
√

(x− y)2
)/

2. If x ≥ y, then
√

(x− y)2 = x− y,

so F (x, y) = x. If x ≤ y, then
√

(x− y)2 = y − x, and F (x, y) = y. With three
variables, let G(x, y, z) = F (F (x, y), z)—not symmetric, but easy!

Comments. 1. In many secondary school books,
√
9 = ±3 is considered to be

correct; in university calculus courses
√
9 = 3; and in a few advanced mathematics

courses again
√
9 = ±3. It all depends on what dialect of Mathematics one speaks.

The great mathematician Euler wrote
√
9 = ±3. My calculator claims that

√
9 = 3.

2. There is no particular virtue in expressing the function “the greater of x and
y” by a formula. The formula given in the solution is less informative than the
forthright max(x, y). And what is a formula? If the trigonometric functions had
not been given names, there would be no “formula” for the cosine function, but
that function would still exist.

There is a widespread superstition that all functions are expressible by for-
mulas. But many important functions are either given by different formulas over
different parts of their domain, or are not expressible by a formula at all. The fact
that “function” and “formula” are not the same thing was only recognized in the
nineteenth century, and led to significant progress. But then again, once upon a
time there was no algebraic notation, and hence no formulas. In early seventeenth
century Europe, formulas were a great forward leap.

IV-39. The numbers x1, x2, . . . , x99 satisfy the equations x1 + x2 = 1,
x2 + x3 = 2, . . . , x98 + x99 = 98, x99 + x1 = 99. Find x1.

Solution. From the first equation, x2 = 1 − x1. But x3 = 2 − x2, so x3 = 2 −
(1 − x1) = 1 + x1. Similarly, x4 = 3 − x3 = 2 − x1, x5 = 2 + x1, and so on up to
x99 = 49 + x1. The final equation gives x1 = 50− x1, so x1 = 25.

We aren’t quite done. The problem said that the numbers x1, x2, . . . satisfy
certain equations. We showed that if there are such numbers, then x1 = 25. Are
there really such numbers? Should we trust the poser of the problem or check
for ourselves? The answer is clear—we check. Let x1 = 25, x2 = −24, x3 = 26,
x4 = −23, x5 = 27, x6 = −22, and so on. Then all the equations up to the last one
are satisfied. But x99 = 74, so the last equation also holds.

Another way: “Add up” the equations:

2(x1 + x2 + · · ·+ x99) = 1 + 2 + · · ·+ 99.
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Now add together the 2nd, 4th, 6th, . . . , up to the 98th equation, and multiply by
2:

2(x2 + x3 + · · ·+ x99) = 2(2 + 4 + · · ·+ 98).

Subtract, grouping terms for convenience. We get

2x1 = (1 − 2) + (3− 4) + · · ·+ (97− 98) + 99 = −49 + 99 = 50.

Again, we should check that there really is a solution.

Comments. 1. If n is odd, the system x1+x2 = a1, x2+x3 = a2, . . . , xn+x1 = an
always has a solution, and

2x1 = an − an−1 + an−2 − · · ·+ a1.

If n is even, then either of the methods we used gives

x1 = an − an−1 + · · ·+ a2 − a1 + x1,

so there is no solution unless an − an−1 + · · · + a2 − a1 = 0. If this last sum is 0,
there are solutions, and x1 can be chosen arbitrarily.

2. This type of system comes up repeatedly in the early Indian literature. Here is
an instance from the Bakhshāl̄ı Treatise, which was found in 1881 in what was then
northwest India, and dates back to possibly as long ago as the year 200.

Five persons each possess a certain amount of wealth. The riches of the first
and second taken together amount to 16. The riches of the second and third taken
together are 17. The riches of the third and fourth are 18, the riches of the fourth
and fifth are 19 and the riches of the fifth and first together amount to 20. Tell me
what is the amount of each.

IV-40. Let a and b be different non-zero numbers. Suppose that the vertical
line through (a, 0) meets the parabola y = x2 at A, and the vertical line
through (b, 0) meets the parabola at B. Where does the line AB meet the
y-axis?

Solution. This is the sort of problem that yields quickly to computation. We can
find the coordinates of A and B, then find the equation of the line AB, then
calculate the y-intercept.

More simply, let the y-intercept P be (0, y). The line segments PA and AB
have the same slope, so (a2 − y)/a = (b2 − a2)/(b − a) = b + a and therefore
y = −ab.

IV-41. Find the remainder when the polynomial x100 is divided by x2 −
5x+ 6.
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Solution. We could actually divide. That’s not quite as bad as it sounds. The first
few terms of the quotient are x98+5x97+19x96+65x95. With a little luck we spot
the pattern 5 = 32 − 22, 19 = 33 − 23, 65 = 34 − 24. The pattern continues, but
with this approach it isn’t easy to prove that it does.

Instead, just imagine dividing. If we divided, we would obtain a quotient
Q(x) and a remainder of the shape ax + b, where a and b are constants. Since
x2 − 5x+ 6 = (x− 2)(x− 3), the relation

x100 = (x− 2)(x− 3)Q(x) + ax+ b.

holds for all x. Put x = 2. The nice thing about this choice is that we can
conclude that 2100 = 2a + b without computing Q(2). In the same way, we find
that 3100 = 3a+ b. Solve: a = 3100 − 2100 and b = 3 · 2100 − 2 · 3100.
Another way: Without loss of generality, we may assume that the remainder has
shape c(x− 2) + d(x − 3). So

x100 = (x− 2)(x− 3)Q(x) + c(x− 2) + d(x− 3).

Set x = 2. We get d = −2100. Similarly, c = 3100.

Comment. Using the same methods, we can compute the remainder when any
polynomial F (x) is divided by (x − p)(x − q), where p (= q. The second method
produces a simple explicit general formula. The ideas generalize.

The quotient when x100 is divided by (x− p)(x− q) turns out to be

x98 + (p+ q)x97 + (p2 + pq + q2)x96 + · · ·+ (p98 + p97q + · · ·+ q98).

IV-42. Someone used the incorrect equation log ab = (log a)(log b) in a
calculation and oddly enough ended up with the right answer. Find all
possible values of a and b.

Solution. We interpret the question to mean: for which (positive) a and b does the
given equation hold? Since in fact log ab = log a+log b, it follows that a and b must
satisfy the equation (log a)(log b) = log a+ log b.

For clarity, let u = log a and v = log b. Thus uv = u + v. Rewrite this as
(u− 1)(v− 1) = 1. This says that u− 1 and v− 1 are reciprocals: if u− 1 = s then
v − 1 = 1/s. The solutions are therefore u = 1 + s, v = 1 + 1/s, where s is any
non-zero number. Hence the possible values of a and b are a = 101+s, b = 101+1/s,
where s ranges over the non-zero reals.

IV-43. The equation x2 + 2(k − 1)x + 9 = 0 has exactly one solution x.
Determine the possible values of k.



CHAPTER 4. EQUATIONS AND INEQUALITIES 143

Solution. A quadratic equation has exactly one solution precisely if the discriminant
is 0. But the given equation is not necessarily a quadratic—the coefficient of x2

can be 0. If k = 0, the equation is linear, with a unique solution. If k (= 0, then we
have a quadratic and can apply the discriminant test.

The discriminant is 4(k− 1)2− 36k2. When we set this equal to 0 and simplify,
we get 8k2 − 2k − 1 = 0. Solve, using the quadratic formula (also, the polynomial
happens to factor nicely). The solutions are −1/4 and 1/2, and therefore the
possible k are 0, −1/4, and 1/2.

Comment. It’s easy to miss the solution k = 0. It is surprising how invisible 0 can
be—or maybe not, after all it is nothing. This invisibility also comes up with an
equation like x2 + 7x = 3x2 + x. We cancel the x with relief, since that simplifies
the equation, sometimes forgetting that we are throwing away a root.

IV-44. Find the intersection points of the curves y = |x|/2 and y = ||x|−5|.

Solution. Each curve is symmetric about the y-axis, so it is enough to deal with
x ≥ 0. For such x, we are looking at the curves y = x/2 and y = |x−5|. (Symmetry
cut the work in half, and as a bonus got rid of two absolute values.) If we sketch
these curves, as in the right half of Figure 4.3, or tell a machine to do so, we can
see where the intersections are. To compute the intersection points, note first that

Figure 4.3: The Curves y = |x|/2 and y = ||x|− 5|

if x ≥ 5, then |x − 5| = x − 5. Put x/2 = x − 5. Then x = 10, which yields the
point (10, 5). If 0 ≤ x < 5, then |x− 5| = 5− x. Put x/2 = 5− x. Then x = 10/3,
which yields the point (10/3, 5/3). For the other intersection points, reflect in the
y-axis.

IV-45. Find all solutions of the system

y + z =
5

x+ y + z
; z + x =

6

x+ y + z
; x+ y =

7

x+ y + z
.

Solution. If we “divide” the first equation by the second, we obtain a linear equation
linking x, y, and z. If we do the same thing with the next two equations, we obtain
another linear equation. Use these equations to express two of the variables, say x
and y, in terms of the third. Finally, substitute into the first equation and solve for
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z. The work is tedious and doesn’t exploit the symmetry enough. Here is a simpler
way.

“Add” the three equations and simplify. We obtain 2(x + y + z)2 = 18 and
conclude that x + y + z = ±3. Work first with x + y + z = 3. From the first
equation, we find that y + z = 5/3, and therefore x = 4/3. Similarly, y = 1 and
z = 2/3.

We can work in the same way with x + y + z = −3. But there is no need to
compute, for if (x, y, z) is a solution of the system then so is (−x,−y,−z). So the
other solution is x = −4/3, y = −1, and z = −2/3.

IV-46. Show that for any a the solutions of

ax3 = x2 + x+ 1

are not all real. Hint. Let x = 1/u.

Solution. Let P (x) = 1+ x+ x2 − ax3. Since 0 is not a root of P (x), put x = 1/u,
and multiply through by u3. Our equation becomes Q(u) = 0, where Q(u) =
u3 + u2 + u− a. The roots of Q(u) are just the reciprocals of the roots of P (x), so
they are all real if and only if the roots of P (x) are.

Let the roots of Q(u) be p, q, and r. Then Q(u) = (u−p)(u−q)(u−r). Expand
and compare coefficients. We get

p+ q + r = −1 and pq + qr + pr = 1.

Since
(p+ q + r)2 = p2 + q2 + r2 + 2(pq + qr + pr)

we conclude that p2 + q2 + r2 = −1. That’s impossible if p, q, and r are real.

Comment. The same method shows that if

P (x) = 1 + px+ qx2 + higher order terms

and p2 ≤ 2q then not all the roots of P (x) are real.

IV-47. Find all four solutions of

(x)(x− 2)(x− 4)(x − 6) = 8 · 6 · 4 · 2.

Solution. The solution x = 8 is obvious; x = −2 is less apparent, but jumps out if
we put x = −y. Let

P (x) = (x)(x − 2)(x− 4)(x− 6)− 8 · 6 · 4 · 2.

Since 8 is a solution of P (x) = 0, the Factor Theorem shows that (x − 8) divides
P (x). Do the division (it can be done without multiplying P (x) out) and let the
quotient be Q(x). But (x + 2) divides Q(x) because −2 is a solution of Q(x) = 0.
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Divide. The quotient is a quadratic polynomial whose roots can be found in the
usual way. Maybe we can save some time by dividing only once, by the product
(x − 8)(x+ 2).

Another way: The sum of the roots of the original equation is the negative of the
coefficient of x3, that is, 12. The original product of the roots is −(8 · 6 · 4 · 2).
Imagine dividing P (x) by (x− 8)(x+2). We get a quadratic polynomial with sum
of roots 12 − (8 − 2) and product of roots 6 · 4. So the quadratic is x2 − 6x + 24,
and its roots are 3±

√
−15.

Another way: Exploit the symmetry by letting y = x − 3. The equation becomes
(y2 − 9)(y2 − 1) = 384. Exploit the symmetry a little more by letting z = y2 − 5.
The equation becomes z2 = 400. Find z, then y, then x.

IV-48. Let ε be a given positive number. Solve the inequality
√
x+ 1−

√
x < ε.

Solution. Let f(x) =
√
x+ 1 −

√
x. Note that f(x) is only defined when x ≥ 0.

Multiply “top” and “bottom” by
√
x+ 1 +

√
x. We conclude that

f(x) =
1√

x+ 1 +
√
x
.

The function
√
x+ 1+

√
x has value 1 at x = 0, and grows steadily without bound

as x becomes large. So if ε > 1, then our inequality holds for all x, and if ε = 1
then the inequality holds for all positive x.

Suppose now that 0 < ε < 1. Since f(x) decreases steadily from 1 towards
0, f(x) takes on the value ε only once. To find where f(x) < ε we first solve the
equation f(x) = ε.

Rewrite
√
x+ 1−

√
x = ε as

√
x+ 1 =

√
x+ ε, square both sides and simplify.

We get 1 − ε2 = 2ε
√
x. Square again. We conclude that x = (1 − ε2)2/4ε2. Since

if ε < 1 there is a solution, and we have found only one expression for x, that
expression must be the solution.

There is a better way to solve
√
x+ 1 −

√
x = ε. Rationalize the numerator

and flip. We get
√
x+ 1 +

√
x = 1/ε. Subtraction gives 2

√
x = 1/ε− ε.

In conclusion, if ε > 1 then the inequality holds for all x ≥ 0; if ε = 1 the
inequality holds for all x > 0; and if ε < 1 then the inequality holds for all x >
(

1/ε− ε
)2/

4.

Comment. If we don’t recognize that the case ε > 1 is special, and just blindly
manipulate, we could wrongly decide that for any ε the inequality holds precisely

when x >
(

1/ε− ε
)2/

4. A look at the graph of y =
√
x+ 1−

√
x helps avoid that

mistake.

IV-49. Let )x* denote the greatest integer less than or equal to x. Find all
integers n that satisfy the equation

)
√
1*+ )

√
2*+ )

√
3*+ · · ·+ )

√
n* = 3n.
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Solution. Explore by calculating )
√
k* for various k, starting at 1. We obtain 1,

1, 1, 2, 2, 2, 2, 2, 3, . . . . The pattern and its explanation are clear: )
√
k* = j for

j2 ≤ k < (j + 1)2.
We reword the problem in terms of money. On day 1 we receive )

√
1* dollars,

on day 2 we receive )
√
2* dollars, and so on. We would like to find the integer(s) n

such that our average earnings per day over the first n days are 3 dollars.
After the first day, we are 2 dollars short of meeting our goal. We fall 2 dollars

further behind on each of days 2 and 3. On each of days 4 through 8 we fall 1 dollar
further behind. So after day 8 we are 11 dollars behind. On days 9 to 15 we are
getting 3 dollars a day, so we fall no further behind.

On day 16 we begin to make progress. Day 26 brings us to an average of
3 dollars a day. After that, our average daily earnings are greater than 3, so n = 26
is the only solution.

Comment. If we try to solve the equation by symbol manipulation, the chances of
success are small.

The mention of money in the solution is inessential but useful, since it makes
the problem concrete. We can see immediately, for example, that if we replace
square roots by cube roots, and 3n by 4n+ 3, the reasoning proceeds in much the
same way.

IV-50. Given that
(

x+
1

x

)2

= 50, find x2 +
1

x2
.

Solution. Straightforward squaring gives
(

x+
1

x

)2

= x2 + 2 +
1

x2
.

Since (x+ 1/x)2 = 50, we conclude that x2 + 1/x2 = 48.

Another way: We could use a brute force attack. From the given equation, we get
x + 1/x = ±

√
50. The solutions are the four roots of x2 ∓

√
50x + 1 = 0. We can

write down the roots explicitly and for each of them compute x2 + 1/x2. It takes
longer.

Comment. Suppose that x+1/x = a. We show how to express x2+1/x2, x3+1/x3,
x4 + 1/x4, and so on in terms of a.

By the argument above, x2 + 1/x2 = a2 − 2. For x3 + 1/x3, note that

(

x+
1

x

)3

= x3 + 3x+
3

x
+

1

x3
.

It follows that x3 + 1/x3 = a3 − 3a. And since

(

x+
1

x

)4

= x4 + 4x2 + 6 +
4

x2
+

1

x4
,



CHAPTER 4. EQUATIONS AND INEQUALITIES 147

x4+1/x4 = a4−4(a2−2)−6 = a4−4a2+2. One can continue, and find expressions
for x5 + 1/x5, x6 + 1/x6, and so on in terms of a.

IV-51. Find the largest real number x that satisfies the equation

|x|+ |x− 2| = x2.

Solution. Look first at real numbers x greater than 2. Then |x|+ |x− 2| = 2x− 2,
and we are studying the equation x2 − 2x + 2 = 0. Use the quadratic formula, or
the fact that x2 − 2x+ 2 = (x− 1)2 + 1, to conclude that the equation has no real
solutions.

Suppose now that 0 ≤ x ≤ 2. In that interval, |x|+ |x− 2| = 2. This is because
|x − a| is the distance from x to a, so |x − 0|+ |x − 2| is the distance of x from 0
plus the distance of x from 2. If 0 ≤ x ≤ 2, this sum is clearly 2.

So we are looking at x2 = 2 which has the solution x =
√
2 in our interval.

There is no point in looking at negative x, since these can’t be greater than
√
2.

Another way: A graphical solution is more informative. We can plot the curves
y = x2 and y = |x|+ |x − 2|. The first curve is familiar, and the second is easy to
draw. It is symmetrical about x = 1, has constant value 2 between 0 and 2, and
rises with slope 2 past x = 2. The picture shows that the parabola y = x2 meets
the curve at the positive solution of x2 = 2, and also at one negative x.

IV-52. Find a polynomial P (x), of as low a degree as possible, such that
x2 divides P (x) and (x− 1)2 divides P (x)− 1.

Solution. A quick glance shows that no polynomial of degree less than 3 can work,
so we look for a suitable cubic P (x). Since P (x) must have the shape P (x) =
x2(ax+ b), we need to find a (= 0 and b such that (x− 1)2 divides x2(ax+ b)− 1.

Divide the polynomial x2(ax + b) − 1 by x2 − 2x + 1. The remainder turns
out to be (3a+ 2b)x− 2a− b − 1. To make this identically 0, set 3a+ 2b = 0 and
2a+ b+ 1 = 0. The only solution is a = −2, b = 3.

Or else we can argue that x−1 must divide P (x)−1, and therefore P (x)−1 = 0
when x = 1. From this we get a+ b = 1. Now

ax3 + bx2 − 1 = ax3 + x2 − ax2 − 1 = a(x3 − x2) + (x2 − 1).

Divide by x− 1. The quotient is ax2 + (x + 1), and must be divisible by x− 1, so
a+ 2 = 0. Now it is easy to find a and b.

IV-53. Solve the system

x− y = 10

x3 − y3 = 2170.



CHAPTER 4. EQUATIONS AND INEQUALITIES 148

Solution. Start with the identity x3 − y3 = (x− y)(x2 + xy + y2), divide by x− y,
and conclude that x2 + xy + y2 = 217. Now what?

Note that 3xy = (x2+xy+y2)−(x−y)2, so xy = 39, and therefore x(x−10) =
39. By the quadratic formula, or otherwise, x = 13 or x = −3, and therefore y = 3
or y = −13.

More symmetrically, note that (x + y)2 = (x − y)2 + 4xy, so (x + y)2 = 256,
and therefore x+ y = ±16. Given x− y and x+ y, it is easy to find x and y.

Or else note that x = y + 10, substitute for x in the equation x3 − y3 = 2170,
and simplify. We quickly reach a quadratic equation in y.

Another way: Here is, in modern notation, the solution given by Diophantus, the
probable originator of the problem. Note how beautifully he exploits symmetry.

Let x = s+5. Then y = s− 5. The difference (s+5)3 − (s− 5)3 is 30s2 + 250.
Set this equal to 2170. We find easily that s2 = 64. Neat!

Comment. Diophantus of Alexandria wrote a treatise called Arithmetica, maybe
around the year 250. The original work consisted of 13 books. A book in the
ancient Greek sense is something that can be rolled into a scroll of convenient size.
The modern equivalent is probably a chapter.

In works that consist of several scrolls, the scrolls can become separated. That
happened with Arithmetica. Until recently, it was thought that only six books
remained. In the early 1970’s, it became known that four more books had survived,
in an Arabic translation by Qusta ibn Lūqā, in the Mashhad Shrine Library. This
problem comes from one of the “lost” books.

Diophantus didn’t have our modern algebraic notation—that was only devel-
oped in the seventeenth century. He had a shorthand for “the” unknown, but only
for one unknown. The problem was stated without symbols (two numbers differ by
10 and their cubes differ by 2170). There were no negative numbers.

Arithmetica contains some virtuoso problem-solving that inspired the seven-
teenth century revival of Number Theory. In a margin of Bachet’s translation of
Arithmetica into Latin, Fermat wrote down the conjecture that became known as
Fermat’s Last Theorem and remained unsolved for more than 350 years.

IV-54. Find all c such that the polynomial x5 − 5cx + 1 has (i) one real
root; (ii) two real roots; (iii) three real roots.

Solution. Draw, or imagine drawing, the curves y = x5 and y = 5cx− 1. If c < 0,
then y = 5cx − 1 goes down as x increases. But y = x5 goes up, so they cross
at most once. They do cross, since y = 5cx − 1 is above y = x5 when x is large
negative and below y = x5 when x is positive.

The curves also cross once if c = 0 or if c is positive but small, for y = 5cx− 1
is below y = x5 at x = 0, and if the line has small slope it can never catch up.

As c grows, the line comes closer to catching y = x5. For a certain positive c0
the line just grazes y = x5 and there are two roots, one negative and one positive.
And if c > c0, then y = 5cx − 1 passes y = x5. But x5 > 5cx − 1 when x is very
large, so there are three roots.
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We now compute c0. If y = 5c0x− 1 is tangent to y = x5 at x = r, then r is a
“double” root of x5 − 5c0x+ 1 = 0, meaning that (x − r)2 divides x5 − 5c0x+ 1.

Do the division. The remainder turns out to be 5r4x − 5c0x + 1 − 4r5. This
remainder identically 0 if c0 = r4 and 4r5 = 1. So r = 4−1/5 and therefore
c0 = 4−4/5.

IV-55. Given that

x0 + x1 = a1, x0 + x2 = a2, x0 + x3 = a3, . . . , x0 + xn = an,

x0 + x1 + · · ·+ xn = b,

find an explicit expression for x0 in terms of b and a1, . . . , an.

Solution. “Add up” all of the equations except the last. There are n copies of x0.
Let one of them keep company with the rest of the xi. We get

(n− 1)x0 + (x0 + x1 + x2 + · · ·+ xn) = a1 + a2 + · · ·+ an.

But x0 + x1 + · · ·+ xn = b, so x0 = (a1 + a2 + · · ·+ an − b)/(n− 1).

Comment. The rule for solving this system is attributed by the Neo-Pythagorean
Iamblichus (fourth century?) to an earlier Pythagorean named Thymaridas (−350?).
For obscure reasons, it is known as the Bloom of Thymaridas.

Make me a crown weighing sixty minae, mixing gold and brass, and with them
tin and iron. Let the gold and bronze together form two-thirds, the gold and tin
together three-fourths, and the gold and iron three-fifths. Tell me how much gold
you must put in, . . . (M etrodorus’ Greek Anthology, maybe fifth century).

IV-56. Solve the equation

x2 − 4x

x− 2
=

2x

2− x
+ 1.

Solution. Perhaps we could multiply both sides by x − 2, and then simplify. We
get x2 − 4x = −2x + (x − 2), and therefore x2 − 3x + 2 = 0. This factors as
(x − 1)(x− 2) = 0, giving x = 1 or x = 2.

It is easy to verify that 1 is indeed a solution of the original equation. But 2 is
not—the expressions involved are not even defined when x = 2.

Comment. What happened? We showed that if the number x is a solution of
the given equation, then the number x is a solution of the simplified equation
x2 − 3x+ 2 = 0. That’s perfectly correct: Any solution of the original equation is
a solution of the transformed equation, just like any human being is a biped. So
no number other than 1 or 2 can be a solution. But that doesn’t mean that any
solution of x2 − 3x + 2 has to be a solution of the original equation: Some bipeds
are chickens.
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There is a similar logical flaw built into the symbol manipulations we use to
solve equations. We transform the equation into another one, then another, and
so on, until the solutions become obvious. Logically speaking, this only shows that
any solution of the equation we started with must be a solution of the equation
we end up with. That does not necessarily mean that a solution of the latter is a
solution of the former.

IV-57. Let c ≥ 0. Find the number of real solutions of x5+x3−10x2−10 =
c, explaining why your answer is certain to be right.

Solution. We could try to use a graphing calculator, but the parameter c causes
difficulty. If we plot y = x5 + x3 − 10x2 − 10− c for c = 0.5, c = 1, and so on, we
may come to believe that for any c ≥ 0 there is exactly one real solution. But it’s
hard to imagine examining every possible graph.

The problem can be solved without a calculator. Divide both sides of the
equation by x2 + 1. We obtain

x3 = 10 +
c

x2 + 1
.

Graph, or imagine graphing, the curves y = x3 and y = 10 + c/(x2 + 1). The
curves can’t meet at a negative x. And the function x3 is steadily increasing, while
10 + c/(x2 + 1) is decreasing in the interval [0,∞). So the curves y = x3 and
y = 10 + c/(x2 + 1) can meet at most once.

A rough sketch shows that they do meet, but let’s do the details. At x = 3
√
10,

the curve y = x3 lies below y = 10+ c/(x2+1). And 10+ c/(x2+1) is never larger
than 10 + c, so the curve y = x3 is above y = 10 + c/(x2 + 1) when x ≥ 3

√
10 + c.

It follows that our equation has a solution somewhere between 3
√
10 and 3

√
10 + c.

Another way: Rewrite the original equation as x2(x3 + x− 10) = 10 + c. We show
that this equation has exactly one solution for any c > −10. This is a stronger
result than was asked for.

If c > −10 then 10 + c is positive, so any solution of our equation must be
positive. The function x2 is an increasing function past x = 0. Since x3 + x− 10 is
an increasing function, x2(x3 + x− 10) is an increasing function past x = 0. Thus
x2(x3 + x− 10) takes on the value 10 + c at most once. It does take on this value,
for x2(x3+x−10) is 0 when x = 0, and is very large when x is large, so somewhere
it must be equal to 10 + c.

Comment. Even though the solution is short, the general parameter c makes the
problem difficult. It may be worthwhile to ask first about a specific example such
as c = 0.5.

We asserted in the solution that it’s hard to imagine examining the graph for
every c. That’s not really true. Look at the equation z = x5 + x3 − 10x2 − 10− y.
This is the equation of a surface in three-dimensional space. There are quite a
few computer programs that do a good job of visually representing surfaces. And
computer-driven machines can accurately mold surfaces.
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In the second solution, we could have noted that x3 + x− 10 = 0 when x = 2,
so x3 +x− 10 can be factored. We chose the number 10 in order to make factoring
approaches possible. The solutions given work if we replace 10x2 by something less
round, such as 3.14x2.

IV-58. Find two rectangles with integer sides and equal perimeters such
that the first rectangle has four times the area of the second.

Solution. If a, b, c, and d are positive integers such that

ab = 4cd, and a+ b = c+ d.

then the a× b and the c× d rectangles satisfy our conditions.
Let d be a multiple of b, say d = kb. If a = 4kc, then the first equation is

satisfied. The second equation becomes 4kc+b = c+kb, or equivalently (4k−1)c =
(k − 1)b. Thus if k is any integer greater than 1, and

d = kb, a = 4kc, and (4k − 1)c = (k − 1)b,

then all our conditions are satisfied.
For a concrete example, take for instance c = 1 and k = 2. Then b = 7, a = 8,

and d = 14.

IV-59. Solve the system x+ y = xy = x2 − y2.

Solution. The system has the obvious solution x = y = 0. If x+ y = 0, then since
x+ y = xy, one of the variables is 0, and therefore both are.

We may now assume that x + y (= 0. Divide both sides of x + y = x2 − y2 by
x+ y. So x− y = 1. Substitute y + 1 for x in x+ y = xy, simplify, and solve. The
solutions are y = (1 ±

√
5)/2. So in addition to x = 0, y = 0, the system has the

solutions x = (3 +
√
5)/2, y = (1 +

√
5)/2 and x = (3−

√
5)/2, y = (1−

√
5)/2.

Another way: Let x = p+ q and y = p− q. The given equations are equivalent to
2p = p2 − q2 = 4pq. If p = 0, then q = 0, and we get the solution x = 0, y = 0.

If p (= 0, then q = 1/2, and p2 − 2p− 1/4 = 0. Thus p = (2±
√
5)/2. Now that

we know p and q, we can easily find x and y.

IV-60. Show that if x and y are real numbers such that all of the square
roots below are real, then

√

x±
√
y =

√

(

x+
√

x2 − y
)/

2±
√

(

x−
√

x2 − y
)/

2.

Solution. There is a lot less to the problem than meets the eye. Call the right-
hand side A ± B. If we square, everything magically simplifies. It turns out that
A2 +B2 = x and 2AB =

√
y.

Another way: Let u and v be non-negative numbers such that

u2 =
(

x+
√

x2 − y
)/

2 and v2 =
(

x−
√

x2 − y
)/

2.
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Then x = u2 + v2 and y = 4u2v2. So we only need to show that
√
u2 + v2 ± 2uv =

u± v. This is obvious.

Comment. Numerical examples can be unsettling. For instance, take x = 10 and
y = 24. We obtain

√

10 + 2
√
6 =

√

5 +
√
19 +

√

5−
√
19,

a result which is hard to believe.

IV-61. Find all x that satisfy the inequality

(
√
x+ 1− 1

x

)2

> x+ 1.

Solution. It is worthwhile to look for shortcuts before starting to calculate, for
tricks can be useful, specially with problems manufactured by tricky people. In
particular, when we see something like

√
x+ 1 − 1, we should wonder whether its

companion
√
x+ 1 + 1 might be helpful—and here it is.

Multiply “top” and “bottom” of (
√
x+ 1 − 1)/x by

√
x+ 1 + 1 and simplify.

We get 1/(
√
x+ 1 + 1). Write u for

√
x+ 1.

Our inequality becomes 1/(u + 1)2 > u2. Because u is non-negative, we can
take square roots to obtain the equivalent inequality 1/(u+ 1) > u, which in turn
is equivalent to u2 + u− 1 < 0.

The equation u2 + u − 1 = 0 has roots u = (−1 ±
√
5)/2, and u2 + u − 1 is

negative only between these roots. But u ≥ 0, so 0 ≤
√
x+ 1 < (−1 +

√
5)/2, or

equivalently −1 ≤ x < (1 −
√
5)/2.

IV-62. Find x and y such that 2x · 3y = 6 and 4x · 5y = 12.

Solution. Use logarithms. The base doesn’t matter much—make it 10. Our equa-
tions are equivalent to the linear equations x log 2 + y log 3 = log 6 and x log 4 +
y log 5 = log 12.

To find x, eliminate y in the usual way. We get

x =
log 6 log 5− log 12 log 3

log 2 log 5− log 4 log 3
,

and now y is easy to find.
Because 4 is the square of 2, we could work without logarithms for a while.

From the first equation we obtain, by squaring, 4x · 32y = 36. But 4x · 5y = 12, and
division gives (9/5)y = 3. So y = log 3/(log 9− log 5).

IV-63. Find all x such that log(x4) <
(

log(x2)
)2
.
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Solution. The curves y = log(x4) and y =
(

log(x2)
)2

are symmetric about the
y-axis, so first let x be positive and then reflect.

Using properties of logarithms, we then obtain the equivalent inequality

4 log x < 4(log x)2, that is, (log x)(1 − log x) < 0.

This inequality holds if log x < 0 (for then 1− log x > 0), and also when log x > 1.
So the original inequality holds when 0 < |x| < 1 and when |x| > 10.

IV-64. Find all x such that 5/(x − 1) < 3/(x+ 1).

Solution. We could draw carefully the curves y = 5/(x− 1) and y = 3/(x + 1) or
ask a graphing calculator to do it. The two hyperbolas meet where x = −4, and
by looking at the picture it is easy to write down the answer.

The problem is not hard to solve even without a calculator, but inequalities
can be treacherous, so we have to be careful. We use the strategy of breaking the
problem into cases.

If |x| > 1, then (x − 1)(x + 1) > 0, while if |x| < 1, then (x − 1)(x + 1) < 0.
Suppose first that |x| > 1. Since (x−1)(x+1) > 0, our inequality holds if and only
if

5(x− 1)(x+ 1)

x− 1
<

3(x− 1)(x+ 1)

x+ 1
,

that is, if and only if 5(x + 1) < 3(x − 1). We conclude that the inequality holds
whenever x < −4.

Suppose next that |x| < 1. Since (x − 1)(x + 1) < 0, the same strategy yields
the inequality 5(x+1) > 3(x− 1), that is, x > −4. So the inequality also holds for
all x in the interval −1 < x < 1.

Another way: Let f(x) = 5/(x − 1) − 3/(x + 1). The only places where f can
conceivably change sign are when x = −1 or x = 1, where f is not defined, and
also where f(x) = 0, namely at x = −4. Our problem is to find where f(x) < 0.

In particular, f(x) doesn’t change sign in the infinite interval to the left of
−4. Calculate f(x) for some pleasant x in that interval, such as −9. The result
is negative, so f(x) is negative in the whole interval. Find other convenient test
values of x, one between −4 and −1, another between −1 and 1, and a final one
greater than 1, and calculate f(x) at these test values. The results tell us where
f(x) is negative.

Comment. Here and elsewhere, we suggest using a graphing calculator to help
us visualize. But it takes a surprising amount of practice to use the tool well:
the graphs that calculators produce must be treated with some skepticism. The
function in this problem “blows up” near −1 and near 1. Graphing calculators can
be quite misleading near such singularities.

IV-65. Find a polynomial P (x) with integer coefficients such that P (
√
6−√

5) = 0.



CHAPTER 4. EQUATIONS AND INEQUALITIES 154

Solution. Let r =
√
6−

√
5. Then (r +

√
5)2 = 6, so r2 + 2r

√
5 + 5 = 6. But then

2r
√
5 = 1−r2. Square both sides and simplify. We conclude that r4−22r2+1 = 0.

Thus
√
6−

√
5 is a root of the polynomial x4 − 22x2 +1. There are infinitely many

other answers, but this one is the simplest.

Another way: Let P (x) be the polynomial

(x −
√
6 +

√
5)(x+

√
6 +

√
5)(x−

√
6−

√
5)(x +

√
6−

√
5).

Then P (x) has our number as a root. We need to verify that P (x) has integer
coefficients.

The product of the first two terms is x2+2
√
5x−1, and the product of the last

two is x2−2
√
5x−1. When we multiply these two quadratics, we get x4−22x2+1.

Comment. Recall that
√
2 and −

√
2 like to hang around together in formulas. In

a similar way, the four numbers ±
√
6±

√
5 and ±

√
6∓

√
5 are fellow travellers (the

technical term is conjugates).
We sketch another proof of the fact that the polynomial P (x) of the second

solution does have integer coefficients. The idea exploits symmetries and has great
conceptual importance in algebra.

Imagine multiplying the four factors of P (x) together. The result is a polyno-
mial that has first coefficient 1, and four other coefficients which we don’t know
because we haven’t actually multiplied. Any coefficient must be of the shape

a+ b
√
6 + c

√
5 + d

√
6
√
5,

where a, b, c, and d are integers.
In the four roots, replace

√
5 everywhere by −

√
5. Then the coefficient a +

b
√
6 + c

√
5 + d

√
6
√
5 becomes a + b

√
6 − c

√
5 − d

√
6
√
5. Since the replacement

process only scrambles the roots, the coefficient is unchanged. We conclude that
c = 0 and d = 0. Similarly, we can show that b = 0, so each coefficient of P (x) is
an integer!

IV-66. Find numbers a, b, and c such that

4x2 − 5x+ 1 = a+ b(x− 2) + c(x− 2)2 for all x.

Solution. We can hunt and peck our way to an answer. Put x = 2. Then the
left-hand side is 7 while the right-hand side is a, so a = 7. The coefficient of x2

on the left is 4, and on the right it is c, so c = 4. To find b, let x = 0. We get
1 = a− 2b+ 4c, so b = 11.

Another way: Let f(x) = 4x2 − 5x + 1. Divide f(x) by x − 2. It turns out that
f(x) = (4x+3)(x− 2)+ 7. Divide 4x+3 by x− 2. We get 4x+3 = 4(x− 2)+ 11.
Thus

f(x) = (4(x− 2) + 11)(x− 2) + 7 = 4(x− 2)2 + 11(x− 2) + 7.

The same idea works for any polynomial.



CHAPTER 4. EQUATIONS AND INEQUALITIES 155

Another way: There is an efficient method that uses a small amount of calculus.
More importantly, the method generalizes to functions other than polynomials, and
enables us to express many of the functions that are useful in applications as power
series.

Let f(x) = 4x2−5x+1 = a+b(x−2)+c(x−2)2. Then f(2) = 7 = a, so a = 7.
Also, f ′(x) = 8x − 5 = b + 2c(x − 2). So f ′(2) = 11 = b. Finally, f ′′(x) = 8 = 2c,
so c = 4.

IV-67. Find a quadratic polynomial whose roots are the cubes of the roots
of the polynomial x2 + bx+ c. Try to do it without computing the roots.

Solution. Let u and v be the roots of x2 + bx+ c. Then u+ v = −b and uv = c.
Let x2 + dx+ e be a quadratic whose roots are u3 and v3. Then the product of

u3 and v3 is e. Since uv = c, we have u3v3 = c3, and therefore e = c3.
To find d, note that d = −(u3+v3) = −(u+v)(u2−uv+v2). But u2−uv+v2 =

(u + v)2 − 3uv, so d = b(b2 − 3c).

IV-68. Suppose that abc (= 0. Solve the equation

a

x− b− c
+

b

x− a− c
+

c

x− a− b
= 3.

Solution. We could “cross-multiply” but it seems a shame to uglify so soon. To
make things look nicer, let x = y + a+ b+ c. The equation becomes

a

y + a
+

b

y + b
+

c

y + c
= 3.

Rewrite this as
a

y + a
− 1 +

b

y + b
− 1 +

c

y + c
− 1 = 0,

or equivalently
y

y + a
+

y

y + b
+

y

y + c
= 0.

Since a, b, and c are non-zero, the equation has the obvious solution y = 0.
To find the other roots we need to solve

1

y + a
+

1

y + b
+

1

y + c
= 0.

If we multiply through by (y + a)(y + b)(y + c), we get the quadratic equation

3y2 + 2(a+ b + c)y + bc+ ac+ ab = 0,

whose roots are

y =
−(a+ b+ c)±

√
a2 + b2 + c2 − bc− ac− ab

3
.

Finally, add a+ b+ c to get x.
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IV-69. It is easy to verify that

(a+ b)3 = a3 + b3 + 3ab(a+ b).

(a) Find numbers a and b such that a3 + b3 = 1 and 3ab = −3.

(b) Use the identity given above to find an expression for the real solution
of x3 + 3x− 1 = 0.

Solution. (a) When we substitute −1/a for b in a3 + b3 = 1 and simplify, we get
a6−a3−1 = 0. This is a quadratic equation in a3. One solution is a3 = (1+

√
5)/2.

For brevity, call this number τ . Then one solution of our system of equations is
a = τ1/3, b = −τ−1/3.

(b) From the identity given above, we see that x = a+b is a solution of x3−3abx−
a3 − b3 = 0. So one solution of the given equation is τ1/3 − τ−1/3, and it is real.
To see that this is the only real solution, note that the functions x3 and x are both
steadily increasing, and therefore so is x3 +3x− 1, so the graph of y = x3 +3x− 1
can only cross the x-axis once.

Comments. 1. The following identity, like most identities, is easy to check:

x3 − 3abx− a3 − b3 = (x− a− b)(x2 + ax+ bx+ a2 + b2 − ab).

Once we have found the real root a+ b, the other roots can be found by solving a
quadratic equation.

2. In the sixteenth century, through the work of a series of interesting Italian
Renaissance figures, among them del Ferro, Tartaglia, and Cardano, a formula was
found for the roots of the general cubic. By a suitable change of variable, the
general cubic equation can be reduced to an equation of type y3+py+q = 0, which
can then be solved with the method we used for x3 + 3x− 1 = 0. See also V-37.

IV-70. Solve the equation
√
x+ 1 +

√
x− 1 = 3.

Solution. Rewrite the equation as
√
x− 1 = 3 −

√
x+ 1, square both sides, and

simplify. We get 6
√
x+ 1 = 11. Square both sides and extract x. We get x = 85/36.

Maybe we should check that 85/36 satisfies the equation. But we don’t need to.
The function

√
x+ 1+

√
x− 1 is 1 at 1 and is large when x is large, so it takes on

all values greater than or equal to 1, in particular 3. Since there is a solution, and
our manipulation has only produced one candidate, it must work.

Another way: Multiply both sides of the equation by
√
x+ 1−

√
x− 1 and simplify.

We get
√
x+ 1 −

√
x− 1 = 2/3. “Add” the original equation. We get 2

√
x+ 1 =

11/3, so x = 85/36.

IV-71. Find all x such that
x2 − 5x+ a

a− 4
> x. Consider all possible values

of a.
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Solution. The problem divides naturally into two cases: (i) a > 4 and (ii) a < 4.
We deal first with case (i). Then a−4 is positive, and so our inequality is equivalent
to x2 − 5x+ a > x(a− 4), that is, to x2 − (1 + a)x+ a > 0. This inequality can be
rewritten as (x − 1)(x − a) > 0. Since a > 1, we conclude that if a > 4, then the
inequality holds when x > a and also when x < 1.

Now we deal with case (ii). Since a− 4 is negative, the inequality is equivalent
to x2 − 5x + a < x(a − 4), that is, to (x − 1)(x − a) < 0. The inequality cannot
hold if a = 1. If a > 1, the inequality holds when 1 < x < a, while if a < 1, the
inequality holds if a < x < 1.

IV-72. Suppose that the polynomial ax4 + bx3 − x2 + bx+ a is divisible by
x2 − x− 2. Find the possible values of a and b.

Solution. Imagine dividing the polynomial by x2−x−2. Let Q(x) be the quotient,
and dx+ e the remainder. Then

ax4 + bx3 − x2 + bx+ a = (x2 − x− 2)Q(x) + dx+ e.

We want to find conditions on a and b which are equivalent to d = e = 0.
Note that x2 − x − 2 = 0 when x = −1 and when x = 2. Substituting these

values of x into the equation above, we get a − b − 1 − b + a = −d + e and
16a + 8b − 4 + 2b + a = 2d + e. Thus d = e = 0 if and only if 2a − 2b = 1 and
17a+ 10b = 4. Now solve for a and b. We get a = 1/3 and b = −1/6.

Another way: Use ordinary polynomial division. The calculation is straightforward.
After a while, we find that the quotient is ax2+(a+b)x+3a+b−1 and the remainder
is (5a+4b−1)x+7a+2b−2. This remainder is identically 0 precisely if 5a+4b−1 = 0
and 7a+ 2b− 2 = 0. Now solve for a and b.

IV-73. Let M = (1/2, 1/2). Find points A and B on the curve y = 1/x2

such that M is the midpoint of the segment AB.

Solution. Make an informal sketch of the curve. A little play shows that there are
such points A and B, and that they must lie on opposite sides of the y-axis.

Let the x-coordinates of A and B be u and v. The y-coordinates are then
1/u2 and 1/v2. From the usual expression for the point midway between two given
points, we get (u+ v)/2 = 1/2 and (1/u2 + 1/v2)/2 = 1/2. So we want

u+ v = 1 and
1

u2
+

1

v2
= 1.

The system takes some effort to solve. One way is to rewrite the second equation
as u2+v2 = (uv)2. By squaring both sides of u+v = 1, we find that u2+v2 = 1−2uv.
Thus (uv)2 = 1− 2uv, and by the quadratic formula uv = −1±

√
2.

Things are now routine. From the identity (u − v)2 = (u + v)2 − 4uv, we
conclude that (u− v)2 = 5 + 4

√
2 (one answer was rejected because (u − v)2 can’t

be negative).
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So u− v = ±
√

5 + 4
√
2. Now that we know u+ v and u− v, u and v are easy

to find. Since there is a solution, by symmetry there are 2 possible values of u, so
both our solutions must be valid.

Another way: We can preserve symmetry yet get down to one variable by letting
u = 1/2− t and v = 1/2 + t. The equation 1/u2 + 1/v2 = 1 becomes

1

(1/2− t)2
+

1

(1/2 + t)2
=

1/2 + 2t2

(1/4− t2)2
= 1.

Simplify. We obtain a quadratic equation in t2, and now we can find t in the usual
way.

Comment. The same type of problem, for other functions, produces other challeng-
ing systems of equations.

IV-74. For what values of c does the equation |u− 3|+ |u− 333| = c have
(i) no solutions; (ii) two solutions; (iii) more than two solutions?

Solution. The first step we take is unnecessary, but it feels like a good idea. Note
that 168 is midway between 3 and 333. Let v = u − 168. We are interested in
|v+165|+ |v−165|. Since 165 isn’t an attractive number, maybe we should let v =
165x and c = 165d. We want to study the number of solutions of |x+1|+|x−1| = d.

When x < −1, both x+ 1 and x− 1 are negative, so the sum of their absolute
values is −2x. When −1 ≤ x ≤ 1, the absolute value of x + 1 is x + 1, while
the absolute value of x − 1 is −(x − 1), so the sum of the absolute values is 2.
And when x > 1, the sum of the absolute values is 2x. The graph of the curve
y = |x + 1| + |x − 1| is now easy to draw. The original equation has no solutions
if c < 330, exactly two solutions if c > 330, and infinitely many solutions when
c = 330.

Another way: Two people have jobs on the x-axis, one at x = 3 and the other at
x = 333. They build a house at (u, 0). Let d(u) be the sum of their distances from
work. Then d(u) = |u− 3|+ |u− 333|.

If the house is built between 3 and 333, then the sum of their commuting
distances is 330. If it is built distance t to the right of 333 or distance t to the left
of 3, then the sum of their commuting distances is 330 + 2t.

So the sum can’t be below 330. For any number c > 330, the sum can be equal
to c in two ways, and it can be exactly 330 in infinitely many ways.

Comment. A graphing calculator can be used to graph |u − 3| + |u − 333|, but
one may have to experiment in order to find the appropriate viewing window. The
reduction to |x+ 1|+ |x− 1| solves the window problem.

IV-75. Find numbers A, B, and C such that

x

(x− 1)(x2 + 1)
=

A

x− 1
+

Bx+ C

x2 + 1

for all x where the functions are defined.
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Solution. Bring the sum on the right to the common denominator (x− 1)(x2 + 1).
The numerator is then A(x2 +1)+ (Bx+C)(x− 1). Compare with the expression
on the left. We need to have

x = A(x2 + 1) + (Bx+ C)(x − 1),

at least for all x (= 1. But if two polynomials are equal at all but one point (or even
at infinitely many points) they are equal everywhere, so the equation above has to
hold identically. Thus the polynomial x is the same polynomial as

(A+B)x2 + (−B + C)x +A− C.

We conclude that A+B = 0, −B+C = 1, and A−C = 0. Solve. We get A = 1/2,
B = −1/2, and C = 1/2.

Comment. Problems that look somewhat like this one, but are far more compli-
cated, come up naturally in applications, for example in the design of electrical
circuits. Calculations can be speeded up in various ways. For example, start with
x = A(x2 + 1) + (Bx + C)(x − 1), and put x = 1. We find immediately that
A = 1/2.

IV-76. Solve the equation

x+ 1

x+ 3
+

x+ 3

x+ 5
=

x+ 5

x+ 7
+

x+ 7

x+ 9
.

Solution. We can cross-multiply and simplify, hoping that things won’t get too
ugly. In fact they don’t, but it’s worthwhile to play a bit first. Note that

x+ 1

x+ 3
= 1−

2

x+ 3
and

x+ 3

x+ 5
= 1−

2

x+ 5
,

and so on like that for the others. So the original equation reduces to

1

x+ 3
+

1

x+ 5
=

1

x+ 7
+

1

x+ 9
.

Now we can compute, but maybe to bring out the symmetry let x + 6 = y. After
some manipulation we obtain

1

y − 3
−

1

y + 3
=

1

y + 1
−

1

y − 1
.

Bring each side to a common denominator and simplify. We get y2 = 3, so x =
−6±

√
3.

IV-77. Let p, q, and r be the roots of x3 − 3x + 1 = 0. Find a cubic
polynomial whose roots are p2, q2, and r2.
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Solution. We could find explicit expressions for p, q, and r by looking at the solution
of IV-69. In sixteenth-century Italy, explicit though complicated formulas were
found for the roots of cubic equations. But we don’t need these formulas to solve
the problem.

Note that p + q + r = 0, pq + qr + rp = −3, and pqr = −1. We are looking
for a cubic x3 − ax2 + bx− c, where a = p2 + q2 + r2, b = p2q2 + q2r2 + r2p2, and
c = p2q2r2. Immediately we find that c = 1.

Since p2 + q2 + r2 = (p+ q+ r)2 − 2(pq+ qr+ rp) = 6, we conclude that a = 6.
It remains to find b. Square pq + qr + rp. We get

9 = (pq + qr + rp)2 = p2q2 + q2r2 + r2p2 + 2pqr(p+ q + r).

Thus p2q2+ q2r2+ r2p2 = 9, and x3− 6x2+9x− 1 is a cubic polynomial with roots
p2, q2, and r2.

IV-78. Solve the equation 3
√
x+ 3

√
95− x = 5.

Solution. Usually we try to eliminate variables. Here we make the equation more
symmetric by using two variables. Let u3 = x and v3 = 95 − x. Our problem
reduces to solving the system u+ v = 5, u3 + v3 = 95. Much more attractive!

Using the identity (u3 + v3)/(u + v) = u2 − uv + v2, we obtain the equivalent
system u+v = 5, u2−uv+v2 = 19. But u2+2uv+v2 = 25, and therefore 3uv = 6.
But (u − v)2 = (u + v)2 − 4uv = 17, so u − v = ±

√
17. We now know u + v and

u− v, and conclude that u = (5±
√
17)/2 and v = (5∓

√
17)/2.

Should we check that these are indeed solutions? Maybe it’s a good idea, for
at one point we squared, and u2 + 2uv + v2 = 25 is not equivalent to u + v = 5.
But in fact we don’t need to check.

By the symmetry between u and v we know that if u = a, v = b is a solution
then so is u = b, v = a. And it is easy to see that the original equation has solutions,
for when x = 0 the left side is 3

√
95, which is less than 5, while at x = 47.5 the

left side is greater than 5. So we know there are two solutions, we have found two
solutions, and therefore the solutions we found are not “extraneous.”

IV-79. Solve the system xy + z = xz + y = yz + x = 3.

Solution. Rewrite the first equation as

xy − xz = y − z, or equivalently (x− 1)(y − z) = 0.

By symmetry, we also need (z − 1)(x− y) = 0 and (y − 1)(x− z) = 0.
Not all of x, y, and z can be 1. So assume that x (= 1. Then y = z. There are

then two possibilities: (i) x = y, in which case x2 + x = 3, that is, x = y = z =
(−1 ±

√
13)/2, or (ii) x (= y, in which case y = z = 1 and x = 2. By symmetry we

also have the solutions x = 1, y = 1, z = 2 and x = 1, y = 2, z = 1.

Another way: Let x = u + 1, y = v + 1, and z = w + 1. Substitute and simplify.
We get uv = vw = wu = 1− u− v − w. Better!
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If none of the variables is 0, then by cancellation u = v = w and therefore
u2 = 1− 3u, so u = (−3±

√
1)/2. If one of the variables is 0 let it be say u. Then

vw = 1− v − w = 0, so one of v or w is 0, say v. But then w = 1.

IV-80. Find all k such that x2 + kx+ 1 and x2 + x+ k2 have at least one
root in common.

Solution. The number u is a root of both polynomials if and only if u is a root of
the first one, and is also a root of the difference of the two polynomials, that is, iff
u2 + ku+ 1 = 0 and (k − 1)u = k2 − 1.

The case k = 1 is uninteresting, for then the equations are the same. So suppose
k (= 1. Then we can cancel k− 1 from both sides of (k− 1)u = k2− 1, and conclude
that u = k + 1.

So k + 1 should be a root of x2 + kx+ 1. Substitute k + 1 for x, simplify, and
set the result equal to 0. We get 2k2 +3k+2 = 0, which has solutions k = −2 and
k = −1/2. The k that work are therefore −2, −1/2, and 1.

IV-81. Let i =
√
−1. Find all real numbers x and y such that

(x+ iy)2 = 2 + 6i.

Solution. We are trying to find all (complex) square roots of 2 + 6i. For x + iy to
be such a square root, we need

(x + iy)2 = x2 + 2xyi+ y2i2 = x2 − y2 + 2xyi = 2 + 6i.

So we are looking for the intersection points of the hyperbolas

x2 − y2 = 2 and 2xy = 6.

Substitute 3/x for y in the first equation. We arrive at x4 − 2x2 − 9 = 0. By the

quadratic formula, x2 = 1+
√
10. Thus x = ±

√

1 +
√
10 and y = ±3/

√

1 +
√
10.

Comment. The above solution is the natural one, unless we know better. One
should probably suggest looking for a solution of the shape

x+ iy = r(cos θ + i sin θ).

Square both sides and use double angle identities. We obtain

r2 cos 2θ = 2 and r2 sin 2θ = 6.

Using these equations, we get

(r2 cos 2θ)2 + (r2 sin 2θ)2 = r4 = 40,

so r2 =
√
40, cos 2θ = 2/

√
40, and sin 2θ = 6/

√
40. Now with a calculator we can

find θ, and then cos θ and sin θ. But we don’t need a calculator. Once we know
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cos 2θ and sin 2θ we can find cos θ by using cos 2θ = 1−2 cos2 θ, and then sin θ from
sin 2θ = 2 sin θ cos θ.

The approach through trigonometric functions is a special case of the important
de Moivre Formula

(cos θ + i sin θ)n = cosnθ + i sinnθ.



Chapter 5

Trigonometric Functions

Introduction

Most of the problems use familiar identities such as cos2 x+ sin2 x = 1 (or
equivalently 1 + tan2 θ = sec2 θ) and the addition formulas

sin(x+ y) = sinx cos y + cos x sin y and

cos(x+ y) = cos x cos y − sinx sin y,

with special cases sin 2x = 2 sinx cos x and cos 2x = cos2 x−sin2 x (and vari-
ants). The less familiar addition formula for the tangent function, namely
tan(x+ y) = (tan x+ tan y)/(1− tan x tan y), is occasionally useful.

Problem V-37 deals with Viète’s method for solving certain cubic equa-
tions by expressing cos 3θ as a polynomial in cos θ. (The cubic is also solved
in IV-69.) Problem V-38 briefly introduces the hyperbolic functions and
could serve as the beginning of an exploration.

Problems and Solutions

V-1. In Figure 5.1, BD = 2, DC = 3, D lies on line BC, AD = 1, and AD
bisects ∠BAC. Find ∠BAC to the nearest tenth of a degree.

Solution. View %ABD and %ADC as triangles with the bases AD and DB. Since
the bases are in the ratio 2 : 3, so are the areas. Let θ = ∠BAD = ∠DAB. Then the
areas of %ABD and %ADC are (1/2)(AB)(AD) sin θ and (1/2)(AC)(AD) sin θ, so
AB and AD are in the ratio 2 : 3.

Let AB = 2t and AD = 3t, and let ∠ADB = θ. Note that ∠ADC = 180◦ − θ,
and cos(180◦ − θ = − cos θ. By the Cosine Law

4t2 = 5− 4 cos θ and 9t2 = 13 + 12 cosθ.

163
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A

B C
D

Figure 5.1: Finding ∠BAC

We conclude that t2 = 4/3. Let φ = ∠BAC. Again by the Cosine Law

25 =
16

3
+ 12− 16 cosφ,

so cosφ = −23/48, and therefore θ is about 118.6 degrees.

V-2. Solve the equation sin−1 x+ sin−1 2x = π/2.

Solution. Recall that sin−1 t is the angle between −π/2 and π/2 whose sine is t.
Let y = sin−1 x and z = sin−1 2x. Then

sin(y + z) = 1, so sin y cos z + cos y sin z = 1.

We have sin y = x and sin z = 2x. But cos y =
√
1− x2 and cos z =

√
1− 4x2,

since both angles are between −π/2 and π/2, and therefore

x
√

1− 4x2 + 2x
√

1− x2 = 1.

Rewrite this as 2x
√
1− x2 = 1 − x

√
1− 4x2, square both sides, and simplify. We

get 3x2 − 1 = −2x
√
1− 4x2. Square both sides again. We get 25x4− 10x2 +1 = 0,

which has the roots 1/
√
5 and −1/

√
5. The second root obviously doesn’t work.

To see that the first does, we only need to show that the original equation has a
solution. This is clear, for the function sin−1 x + sin−1 2x grows from 0 to beyond
π/2 as x grows from 0 to 1/2.

V-3. Suppose that cos x + 4 sinx is as large as possible. Find cos x. Hint:
Divide by

√
12 + 42 and use a trigonometric identity.

Solution. Let f(x) be the function we wish to maximize. Then

f(x) =
√
17

(

1√
17

cosx+
4√
17

sinx

)

.

Let α be the angle between 0 and π/2 whose sine is 1/
√
17. By the addition law

for the sine function, √
17f(x) = sin(α+ x).

Thus f(x) reaches a maximum whenever α + x = π/2 + 2nπ for some integer n.
But then cosx = cos(π/2− α) = sinα = 1/

√
17.
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V-4. Suppose that cos θ = (1 − t2)/(1 + t2), where 0 ≤ θ < π. Express
tan(θ/2) in terms of t.

Solution. Since cos θ = 2 cos2(θ/2)− 1,

2 cos2(θ/2) =
1− t2

1 + t2
+ 1 =

2

1 + t2
,

and therefore sec2(θ/2) = 1 + t2. Now use the identity 1 + tan2 u = sec2 u to
conclude that tan2(θ/2) = t2. Since tan(θ/2) ≥ 0, it follows that tan(θ/2) = |t|.
Another way: The identity 1 + tan2 θ = sec2 θ can be bypassed. Note that

sin2 θ = 1−
(1− t2)2

(1 + t2)2
.

The right-hand side simplifies to 4t2/(1+ t2)2, so sin θ = 2|t|/(1+ t2). Now use the
fact that sin θ = 2 sin(θ/2) cos(θ/2) and cos θ = 2 cos2(θ/2) − 1 to conclude that
tan(θ/2) = |t|.

Comment. Note that
1− t2

1 + t2
=

2

1 + t2
− 1.

As t travels upward from 0, 2/(1 + t2) travels from 2 toward 0. So the function
(1− t2)/(1+ t2) takes on each value in (−1, 1] exactly once, and therefore the cosine
of any angle in [0,π) can be expressed as (1 − t2)/(1 + t2). The angle π doesn’t
quite make it, unless we allow t = ∞. See 3 for a problem on the same theme.

V-5. The usual identities for cos(x+ y) and cos(x− y) yield

cos x cos y =
cos(x+ y) + cos(x− y)

2
.

Your calculator is broken: it can only add, subtract, divide by 2, and find
cos u and cos−1 v for any u and v. Let a = 0.87654321 and b = 0.31415926.
Use the broken calculator and the identity above to calculate ab with good
accuracy.

Solution. First find x and y such that cosx = a and cos y = b. It doesn’t matter
whether we work in radians or degrees; for the same of tradition use degrees. Using
the cos−1 button, we find that we can take x = 28.77185651 and y = 71.68993344,
and therefore x+y = 100.46179 and x−y = −42.91807693. Now calculate cos(x+y),
cos(x− y), add, and divide the result by 2. We conclude that ab = 0.275374165.
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Comment. In the sixteenth century, astronomers sometimes used a variant of this
method to multiply! The procedure was called prosthaphaeresis. In astronomical
calculations, it was often necessary to find (the equivalent of) sinx sin y. High accu-
racy tables of the sine function were a standard tool of the trade, so the procedure
described above was considered practical.

In the early seventeenth century, Napier and Bürgi discovered logarithms, and
good tables were soon available. These “log tables” remained a standard tool for
multiplying until the 1960’s.

There is in fact a deep structural connection between the sine and cosine func-
tions and the exponential function—see for example V-38. And the identity that
was used in the computation has the same feel as exey = ex+y, if you are willing to
overlook small differences of detail.

V-6. The triangle PQR of Figure 5.2 has PQ = PR = a and QR = 2b.
The bisectors of ∠PQR and ∠PRQ meet at O. Express the area of %OQR

P

Q R

Oa a

2b

Figure 5.2: The Area of %OQR

in terms of a and b.

Solution. There are a number of geometric approaches, but in keeping with the
theme of this chapter the solution uses trigonometric identities. Let M be the
midpoint of QR, and let ∠PQR = 2θ. Then OM = b tan θ, and therefore the area
of %OQR is b2 tan θ.

It remains to express tan θ in terms of a and b. Since

b

a
= cos 2θ = 2 cos2 θ − 1,

it follows that sec2 θ = 2a/(a+ b), and therefore tan2 θ = (a − b)/(a + b). So the
required area is b2

√

(a− b)/(a+ b).

V-7. Given that sinx (= 0, find a simple expression for

(cos x)(cos 2x)(cos 4x) · · · (cos 256x)(cos 512x).

Hint: Multiply by sinx.
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Solution. Let our product be P (x), and calculate (sinx)P (x). Note that sinx cosx =
(1/2) sin 2x. But sin 2x cos 2x = (1/2) sin 4x, and therefore sinx cosx cos 2x =
(1/4) sin 4x. Continue in this way. After a few steps we find that

(sinx)P (x) =
sin 1024x

1024
and therefore P (x) =

sin 1024x

1024 sinx
.

Comment. Multiplication by sinx acted somewhat like a catalyst does in a chemical
reaction, for it helped the other terms to combine with each other.

V-8. The sides of a triangle are in arithmetic progression and one of the
angles is 120◦. Find the cosine of the smallest angle of the triangle.

Solution. The sides can be taken to be a− d, a, and a+ d. By scaling if necessary
we can assume that a = 1. The largest side is opposite the 120◦ angle. By the
Cosine Law

(1 + d)2 = (1 − d)2 + 12 + (1)(1− d).

When we simplify, we find to our pleasure that the d2 terms cancel and d = 2/5.
So the sides can be taken to be 3/5, 1, and 7/5, or more simply 3, 5, and 7.

The smallest angle θ is opposite the smallest side. By the Cosine Law 9 =
25 + 49− 70 cos θ and therefore cos θ = 13/14.

V-9. Find the smallest positive x such that cos 3x+ sin 2x = 0, preferably
in several ways.

Solution. We can let microprocessors do the work, either by reading the answer off
a graph or by using the Solve button on a calculator.

Another way: We can bring out the machinery of trigonometric identities. The
identity cos 3x = cos 2x cosx − sin 2x sinx, together with the usual double angle
identities, yields after a while cos 3x = 4 cos3 x− 3 cosx.

The original equation can thus be rewritten as 4 cos3 x−3 cosx+2 cosx sinx =
0. The common factor cosx produces the obvious solution x = π/2.

Now look for solutions of 4 cos2 x − 3 + 2 sinx = 0. This can be rewritten as
4 sin2 x − 2 sinx − 1 = 0. The solutions are sinx = (1 ±

√
5)/4. So we want the

least positive solution of sinx = (1 +
√
5)/4.

Perhaps it is time to go to the calculator. We find that x is approximately
0.942477796 radians. Out of curiosity, we might go to degrees. To the limit of
calculator accuracy, the result seems to be 54◦. Interesting! Maybe we should try

Another way: We need to find where the two curves y = cos 3x and y = − sin 2x
meet. Since radian measure is less familiar, we will work with degrees. A casual
sketch shows that the two curves first meet at a point a little short of 60◦.

Recall that cos(90◦ + u) = − sinu. So we want the first positive solution of
cos 3x = cos(90◦ + 2x). If we bear in mind that the answer is a little short of 60◦,
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we can see that the angles 3x and 90◦+2x should be symmetrical about 180◦, and
therefore

90◦ + 2x− 180◦ = 180◦ − 3x, so x = 54◦.

Comment. The identity cos 3x = 4 cos3 x− 3 cosx can be used to solve cubic equa-
tions, and is crucial in proving that the general angle cannot be trisected with
straightedge and compass. See V-37.

The third approach works for cos ax + sin bx = 0, where a and b are any real
numbers, and for other closely related equations.

V-10. Let θ = π/12. Find a simple expression for

cos θ + sin θ

cos θ − sin θ
.

Solution. Multiply top and bottom by cos θ + sin θ. The denominator becomes
cos2 θ − sin2 θ, that is, cos 2θ, which in this case is

√
3/2. The numerator becomes

cos2 θ+2 cos θ sin θ+sin2 θ, which simplifies to 1+ sin 2θ, that is, 3/2. Now divide:
the result is

√
3.

V-11. Find all solutions of the system

sinx+ sin y = sin(x+ y)

cos x+ cos y = cos(x+ y)

in the interval −π < x, y ≤ π.

Solution. This is an exercise in trigonometric identities. Square both sides of each
equation and add. By using the identity sin2 u+cos2 u = 1, and some manipulation
we obtain

cosx cos y + sinx sin y = −
1

2
,

that is, cos(x− y) = −1/2.
Multiply both sides of the first given equation by sinx, both sides of the second

by cosx, and add. Note that

cos(x+ y) cosx+ sin(x + y) sinx = cos(x+ y − x) = cos y.

So we obtain 1 + cos(x− y) = cos y, and conclude that cos y = 1/2. By symmetry,
cosx = 1/2.

The only possibilities for x and y are therefore ±π/3—nothing else can work,
but that doesn’t mean all four combinations will work. The solutions turn out to
be x = π/3, y = −π/3 and x = −π/3, y = π/3.
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V-12. Is there a number a such that

a(sin4 x+ cos4 x)− (sin6 x+ cos6 x)

is independent of x?

Solution. It seems unlikely that there is such a number. But if there is, then there
is a constant b such that

a(sin4 x+ cos4 x) = (sin6 x+ cos6 x) + b

for all x. Put x = 0 in the above (hypothetical) equation. Then a = 1 + b. Put
x = π/4. Then a/2 = 1/4 + b. We conclude that the only possible a is 3/2. We
must verify that this a actually works for all x. To get rid of fractions, multiply by
2. So we examine

3(sin4 x+ cos4 x)− 2(sin6 x+ cos6 x).

Rewrite the above expression as

(sin4 x)(3 − 2 sin2 x) + (cos4 x)(3 − 2 cos2 x),

and use the fact that 3−2 sin2 x = 1+2(1−sin2 x) = 1+2 cos2 x, and 3−2 cos2 x =
1 + 2 sin2 x to obtain

sin4 x+ (2 sin2 x cos2 x)(sin2 x+ cos2 x) + cos4 x.

But this is simply the square of sin2 x+ cos2 x, so it is identically equal to 1.

Another way: Recall that in general u3 + v3 = (u + v)(u2 − uv + v2). If we set
u = sin2 x, v = cos2 x, we find that

sin6 x+ cos6 x = (sin2 x+ cos2 x)(sin4 x− sin2 x cos2 x+ cos4 x)

= sin4 x− sin2 cos2 x+ cos4 x.

It follows that

3(sin4 x+ cos4 x)− 2(sin6 x+ cos6 x) = sin4 x+ 2 sin2 x cos2 x+ cos4 x,

and this last expression is identically equal to 1.

V-13. Given that secx+ tan x = 2, find csc x+ cot x. Generalize.

Solution. Suppose that secx + tanx = a. Multiply both sides by secx − tanx.
Since sec2 x− tan2 x = 1, there is no risk that we are multiplying by 0. We have

1 = a(secx− tanx) and

a2 = a(secx+ tanx).
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Solve for secx and tanx:

secx =
a2 + 1

2a
and tanx =

a2 − 1

2a
.

Since cotx = 1/ tanx and cscx = secx/ tanx, we conclude that

cscx+ cotx =
a2 + 1

a2 − 1
+

2a

a2 − 1
=

a+ 1

a− 1
.

V-14. Find (sin 15◦ + sin 75◦)6 without using a calculator.

Solution. Note that sin 75◦ = cos 15◦. But

(sin 15◦ + cos 15◦)2 = sin2 15◦ + cos2 15◦ + 2 sin 15◦ cos 15◦

= 1 + sin 30◦ =
3

2
.

and therefore (sin 15◦ + sin 75◦)6 = 27/8. (The instruction not to use a calculator
shouldn’t be taken too seriously—it’s worth peeking, maybe to get insight into what
the answer might be, or to check at the end that there is no mistake.)

Another way: Note that 15◦ = 45◦ − 30◦ and 75◦ = 45◦ + 30◦. By using the
formulas for the sine of the difference and of the sum of two angles, we find that
sin 15◦ + sin 75◦ is equal to

(sin 45◦ cos 30◦ − cos 45◦ sin 30◦) + (sin 45◦ cos 30◦ + cos 45◦ sin 30◦).

This simplifies to
√
3/

√
2. Now calculate the sixth power.

V-15. Let A be the point with coordinates (4, 3), and B the point obtained
by rotating A counterclockwise about the origin through π/6 radians. Use
trigonometric identities to find the coordinates of B.

Solution. Let α be the angle through which we must rotate the positive x-axis
counterclockwise so that it will pass through A, and let β = α+ π/6. If we rotate
the positive x-axis counterclockwise through an angle β, then the resulting half-line
passes through B.

The line joining the origin to A has length
√
42 + 32, and therefore cosα = 4/5

and sinα = 3/5. Thus

cosβ = cos(α+ π/6) = cosα cos(π/6)− sinα sin(π/6),

and therefore cosβ = (4/5)(
√
3/2)− (3/5)(1/2). A similar calculation shows that

sinβ = (3/5)(
√
3/2) + (4/5)(1/2). Since the line segment joining the origin to

B has length 5, it follows that B has x-coordinate (4
√
3 − 3)/2 and y-coordinate

(3
√
3 + 4)/2.
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Comment. It should be stressed that the sum formulas for cosine and sine are re-
ally all about combining rotations. The above problem is artificial, in that numbers
work out “exactly,” but calculations of the same type are the most common prac-
tical application of the trigonometric identities. For example, combining rotations
efficiently is key to making computer animation look realistic. Computer hardware
for games must be able to calculate sines and cosines very quickly.

V-16. Find an explicit formula for the solutions of the equation tan(πx) =
tan(π/x).

Solution. In general, tanu = tan v precisely if u and v differ by an integer multiple
of π. So our equation holds if and only if πx − π/x = nπ for some integer n. The
equation simplifies to x2−nx− 1 = 0, which has the solutions (n±

√
1 + 4n2)/2.

V-17. Find the solutions of the equation (cos2 θ sin2 θ)x2−x+1 = 0, where
θ is a given number. Simplify as much as possible.

Solution. If sin θ = 0 or cos θ = 0, the only solution is x = 1. In all other cases, the
quadratic formula gives

x =
1±

√

1− 4 cos2 θ sin2 θ

2 cos2 θ sin2 θ
.

Now we simplify as much as possible, whatever that means. Maybe we can use the
fact that 2 sin θ cos θ = sin 2θ. If we do that, we obtain

1±
√

1− sin2 2θ

2 cos2 θ sin2 θ
,

which simplifies to
1± | cos 2θ|
2 cos2 θ sin2 θ

.

In the above formula, ±| cos 2θ| can be replaced by 1+cos 2θ. Now use the relation
cos 2θ = 2 cos2 θ−1. The numerators are 1+(2 cos2 θ−1) and 1−(1−2 sin2 θ), that
is, 2 cos2 θ and 2 sin2 θ. There is cancellation, and the roots are csc2 θ and sec2 θ.

Another way: When we simplified the discriminant, we took an unnecessary round
trip through double angle identities, for

1− 4 cos2 θ sin2 θ = 1− 4(1− sin2 θ) sin2 θ = (2 sin2 θ − 1)2.

Another way: The relation

(cos2 θ sin2 θ)x2 − x+ 1 = ((cos2 θ)x − 1)((sin2 θ)x− 1).

holds identically. To check this, just multiply out. The coefficient of x in the
product is −(cos2 θ + sin2 θ), and that is −1 as desired. The quadratic is now
factored, so we can write down the roots immediately, in pretty simple form.
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V-18. Given that cos 2θ = 2cos θ and 0 < θ < π, find sin θ.

Solution. We really should sketch the curves y = cos 2x and y = 2 cosx to find out
what’s going on. Even a rough picture shows that there is exactly one solution θ
in the specified interval, and tells us approximately where it is.

But sometimes (often?) there is no penalty for pushing things through the
formula sausage machine. Use the identity cos 2x = 2 cos2 x − 1. Our original
equation becomes 2 cos2 θ − 2 cos θ − 1 = 0. Solve this quadratic equation in cos θ.
We get cos θ = (1 −

√
3)/2 (the other root is bigger than 1, so can’t be the cosine

of anything).
At this stage we could use a calculator to find θ, and then sin θ. But it is not

difficult, and aesthetically more pleasing, to find an exact expression.
Note that sin2 θ = 1−cos2 θ = 1−(1−

√
3)2/4. This simplifies to sin2 θ =

√
3/2.

But sin θ is positive, since 0 < θ < π, and therefore sin θ =
√√

3/2.

Another way: We can compute sin θ directly. Note that cos 2θ = 1 − 2 sin2 θ and
cos2 θ = 1 − sin2 θ. If θ satisfies the original equation, then cos2 2θ = 4 cos2 θ, and
therefore

(1− 2 sin2 θ)2 = 4(1− sin2 θ).

This simplifies nicely: after a short while we find that sin4 θ = 3/4, and since sin θ

is positive, conclude that sin θ =
√√

3/2.
Any anxiety we might feel about having introduced a spurious root through

squaring—which can happen—is allayed by a sketch. The sketch shows there is a
solution, and the calculations produced only one candidate, so it must work.

Comment. The first argument is probably the natural one, since we can see that
a familiar identity yields a quadratic equation, so cos θ is “known,” and therefore
sin θ is. After we see this, it’s all over except for minor details.

V-19. The familiar identity cos 2x = 2cos2 x−1 says that cos 2x = P (cos x)
where P (t) is the polynomial 2t2 − 1. (a) Find a polynomial Q(t) of degree
8 such that cos 8x = Q(cos x). (b) How many real numbers t are there such
that Q(t) = 1/2? List them all.

Solution. (a) We have

cos 4x = 2 cos2 2x− 1 = 2(2 cos2 x− 1)2 − 1.

But cos 8x = 2 cos2 4x− 1 and therefore

cos 8x = (2(2 cos2 x− 1)2 − 1)2 − 1.

We conclude that Q(t) = (2(2t2 − 1)2 − 1)2 − 1. “Simplification” seems pointless.
It may be closer to uglification.

(b) The equation Q(t) = 1/2 has at most 8 real roots, since Q(t) has degree 8.
We show it has exactly 8 roots, and identify them. Look for solutions of the form
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t = cosx. Then Q(t) = cos 8x, so cosx is a solution if and only if cos 8x = 1/2.
But cos 8x = 1/2 iff 8x is, in radians, of the form 2πk ± π/3.

We find 8 values of cosx that work. Let x = (2πk + π/3)/8 for k = 0, 1, 2,
. . . , 7. That gives x = π/24, 7π/24, 13π/24, 19π/24, 25π/24, 31π/24, 37π/24,
43π/24—degree notation is more pleasant!

By looking at the graph of y = cosx, we can see that the cosines of these 8
angles are distinct. We have found 8 roots, but there are no more than 8, so we
have found them all. We needn’t even look at a graph, since we can use a calculator
to compute cosx for the 8 values of x. But what comes out of the calculator is a
mess of digits. The expressions for the roots are far more informative.

Comments. 1. The formula Q(t) = (2(2t2− 1)2− 1)2− 1 is more practical than the
multiplied out form would be. To compute Q(t) for some real t, takes, if we use the
above expression, three rounds of squaring, multiplying by 2, and subtracting 1.
If we needed to work out something similar for say cos 64x, the number of rounds
would climb to six, but that is far easier than multiplying out the polynomial
and evaluating in the “normal” way. What is appropriate simplified form for one
purpose may not be appropriate for another.

2. For any non-negative integer n there is a polynomial Tn(t), of degree n such that
cosnx = Tn(cosx). The first five of these polynomials are 1, t, 2t2−1, 4t3−3t, and
8t4−8t2+1. The Q(t) that we calculated is just T8(t). These polynomials are called
the Chebyshev polynomials, after the nineteenth-century Russian mathematician.
So why the letter T ? His name used to be transcribed from the Cyrillic to the
Latin alphabet as, among other things, Tchebychef. The Chebyshev polynomials
have important engineering applications, for example in loudspeaker design, the
design of electrical filters, and the analysis of heat flow.

V-20. A certain angle θ, where 0 < θ < π/2, satisfies the equation 6cos
2 θ +

6sin
2 θ = 5. Find θ, in radians, to 7 decimal places.

Solution. It is tempting to substitute 1 − sin2 θ for cos2 θ to see whether anything
interesting happens. It does. But it is more efficient to multiply both sides of the
given equation by 6sin

2 θ. Since sin2 θ+ cos2 θ = 1, the given equation is equivalent
to

6 + 62 sin2 θ = 5 · 6sin
2 θ.

Let x = 6sin
2 θ. Then 6 + x2 = 5x, and therefore x = 2 or x = 3.

The solution x = 2 gives 6sin
2 θ = 2. Take logarithms, say to the base 10. We

get sin θ =
√

log 2/ log 6, since sin θ is positive. The calculator says that θ is about
0.6712623 radians.

We could work with x = 3 in the same way. But note that sin θ and cos θ occur
symmetrically in the problem, and therefore if θ is a solution, so is π/2− θ.

V-21. On an exam, a student needed to find the cosine of x degrees. So
the student keyed in x and pressed the cos key. By mistake, the calculator
had been left in radian mode, but as luck would have it, the calculator’s
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answer turned out to be exactly right. Find the smallest possible x, given
that x > 50◦.

Solution. Since the calculator was in radian mode, it thought it was taking the
cosine of x radians, that is, 180x/π degrees, and the cosine of this turned out to be
exactly the same as the cosine of x◦. It follows that 180x/π = 360n± x for some
integer n.

Solve for x. We obtain x = 360πn/(180∓ π). So, approximately, x = 6.175n
or x = 6.395n. To make x > 50 but as small as possible, use the second expression
for x and put n = 8. We conclude that x is about 51.16 degrees.

V-22. Find all possible values of sinx/ sin 3x.

Solution. A graphing calculator is useful here. We can confine attention to the
interval from −π/2 to π/2, and in fact, since sin(−u) = − sinu, we can restrict
attention to the interval from 0 to π/2. In graphing, we need to stay somewhat
away 0 and π/3, since the denominator is not defined at these points. In particular,
our function blows up near π/3, so the calculator has to be used carefully. But if we
do, we can see that the range of values seems to consist of the interval (−∞,−1],
together with [a,∞), where a looks as if it is not far from 1/3.

Another way: Note that

sin 3x = sinx cos 2x+ cosx sin 2x = (sinx)(1 − 2 sin2 x) + (2 sinx)(cos2 x).

If we replace cos2 x by 1− sin2 x and simplify, we obtain sin 3x = 3 sinx− 4 sin3 x.
Thus, except where the denominator is 0, sinx/ sin 3x = 1/(3− 4 sin2 x.

The denominator takes on all values between −1 and 3. Thus, the range of
sinx/ sin 3x consists of all numbers in the interval (−∞,−1] together with [1/3,∞).

V-23. Assume that the Earth is a perfect sphere of radius r. We travel
around the Earth at latitude 50◦ North. How far do we travel?

Solution. Let P be a point at latitude 50◦ North, let N be the North Pole, and
C the center of the Earth. Drop a perpendicular from P to the line CN , meeting
CN say at Q. In going around the Earth at latitude 50◦, we travel around a circle
of radius PQ. The plane through N , P , and C meets the Equator at two points, a
“near” one E and a diametrically opposite “far” one (see Figure 5.3). Latitude 50◦

North means that ∠ECP = 50◦ and P is in the northern hemisphere. It follows
that ∠CPQ = 50◦. But CP = r and ∠CQP is a right angle, so PQ = r cos 50◦,
and therefore the distance travelled is 2πr cos 50◦.

V-24. Suppose that cos θ+ sin θ = 5/4, and 0 < θ < 90◦. Find the possible
values of tan θ, preferably without using a calculator.
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C E

N

PQ

50◦

Figure 5.3: Travelling Around the Earth at 50◦ North

Solution. The expression cos θ + sin θ becomes more attractive when squared. So
square both sides. We obtain

cos2 θ + 2 cos θ sin θ + sin2 θ = 25/16.

Now use trigonometric identities to conclude that 1 + sin 2θ = 25/16, and hence
sin 2θ = 9/16. We can now use the calculator to find 2θ with good accuracy. There
are two values, about 34.229◦ and 180◦ − 34.229◦. Using the calculator, compute
θ, and then tan θ. The answers are x, where x is about 0.3079159, and 1/x.

A calculator-free way is to note as above that sin 2θ = 9/16, and conclude that
cos2 2θ = 1− 81/256. Thus we know cos 2θ. But 2 cos2 θ = cos 2θ + 1, and tan θ is
then the ratio of the known quantities 2 sin θ cos θ and 2 cos2 θ.

Another way: It seems wasteful to go to trigonometric functions of 2θ, and then
back to θ. By squaring both sides, we found that 1 + 2 cos θ sin θ = 25/16, and
therefore sin θ cos θ = 9/32. Thus

sin2 θ + cos2 θ

sin θ cos θ
=

1

9/32
.

But (sin2 θ+cos2 θ)/ sin θ cos θ = tan θ+1/ tan θ. We arrive at the equation tan2 θ−
(32/9) tan θ + 1 = 0. Solve: tan θ = (16± 5

√
7)/9.

Comment. The original equation is symmetrical in sin θ and cos θ. Equivalently,
since sin(π/2 − θ) = cos θ and cos(π/2 − θ) = sin θ, the equation has symmetry
about θ = π/4. Since tan(π/2 − θ) = 1/ tan θ, if tan θ = a is a solution then so is
tan θ = 1/a.

V-25. Show that

sin(x+ y) sin(x− y) = (sinx+ sin y)(sin x− sin y).

Solution. We play with the standard identities

sin(x+ y) = sinx cos y + cosx sin y and sin(x− y) = sinx cos y − cosx sin y.

Multiply. The middle terms cancel, and we get sin2 x cos2 y− cos2 x sin2 y. Finally,
replace cos2 u by 1− sin2 u in the preceding expression, and simplify. There is some
cancellation, and we get sin2 x− sin2 y.
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V-26. Let ABC be a right-angled isosceles triangle, with the right angle at
C, and let M be the midpoint of BC. Find the cotangents of ∠MAC and
∠MAB.

Solution. Let the equal legs of %ABC have length 2. The cotangent of ∠MAC
can be read off from Figure 5.4: it is 2. Now compute the cotangent of ∠MAB.

A B

C

M

N

1

1

2

Figure 5.4: Cotangents of Two Angles

One way is to obtain a general formula for cot(x − y). Recall that cos(x − y) =
cosx cos y + sinx sin y and sin(x − y) = sinx cos y − cosx sin y. Divide, and then
divide “top” and “bottom” by sinx sin y. We obtain

cot(x − y) =
cosx cos y + sinx sin y

sinx cos y − cosx sin y
=

cotx cot y + 1

cot y − cotx
.

Use the above formula with x = ∠CAB and y = ∠MAC. The cotangent of ∠MAB
is turns out to be 3. (We could also work with the more familiar tangent function.)

Another way: Drop a perpendicular from M to the hypotenuse, meeting AB at N .
By the Pythagorean Theorem, NM = NB = 1/

√
2. But again by the Pythagorean

Theorem, AB = 2
√
2 and therefore AN = (3/2)

√
2. It follows that the cotangent

of ∠MAB is 3.

V-27. Let P be a point where the curves y = cos x and y = tanx meet.
The line through P parallel to the y-axis meets the curves y = cscx and
y = sinx at points Q and R. Find the length of QR.

Solution. Rewrite the equation cosx = tanx as cosx = sinx/ cosx. Simplify,
using the identity cos2 x = 1 − sin2 x. We obtain sin2 x + sinx − 1 = 0. Thus
sinx = (

√
5− 1)/2.

The length of QR is | cscx − sinx|. Calculate, using the computed value of
sinx. Fairly quickly, we get the answer 1. Nice answer!

Another way: Start not by trying to find the intersection points, but by looking at
what is asked for. We want cscx − sinx. From cosx = tanx, we obtain cos2 x =
sinx, that is, 1−sin2 x = sinx. Divide both sides by sinx. We get cscx−sinx = 1.

Comment. It turns out that we didn’t need to know that sinx = (
√
5 − 1)/2 and

therefore cscx = (
√
5 + 1)/2. But if we solve the problem in the second way, we

will miss seeing the Golden Ratio (
√
5 + 1)/2 strike again.
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V-28. Find exact expressions for sin(π/8) and sin(π/16).

Solution. Since sin(π/4) = 1/
√
2, it is reasonable to use the double angle formula

sin 2θ = 2 sin θ cos θ. We rewrite the formula in a more convenient form. Let
b = sin 2θ. Then

b2 = 4 sin2 θ cos2 θ = 4 sin2 θ(1 − sin2 θ),

or equivalently 4 sin4 θ − 4 sin2 θ + b2 = 0. This is a quadratic equation in sin2 θ.
Solve, obtaining sin2 θ = (1±

√
1− b2)/2.

We will be working with angles θ between 0 and π/8, and therefore

sin θ =

√

2−
√

4− 4 sin2 2θ

2
.

In the formula above, let 2θ = π/4. We conclude that

sin(π/8) =

√

2−
√
2

2
.

Next let 2θ = π/8. We conclude that

sin(π/16) =

√

2−
√

2 +
√
2

2
.

Comment. In exactly the same way, we can continue by finding sin(π/32), then
sin(π/64), and so on forever. We show how these computations can be used to
calculate π.

Inscribe a regular 2n-sided polygon in a circle of radius 1. Any side subtends an-
gle 2π/2n at the center of the circle. A sketch shows that the polygon has side length
2 sin(π/2n), and so has half-circumference 2n sin(π/2n). But the half-circumference
of the polygon, should, for large n, be quite close to the half-circumference of the
circle, namely π.

We have seen that sin(π/2n) can be computed just using basic arithmetic op-
erations and square root. In particular, take 2n = 16. The half-perimeter of the
regular 16-gon is roughly 3.121445. Not a bad estimate for π!

Archimedes, around −250, used this idea to show that π lies between 3 10
71

and 3 1
7 . His method was more sophisticated, in that he used both inscribed and

circumscribed polygons. His polygons had 96 sides.
The same basic approach to the computation of π was used up to the end of

the seventeenth century. Ludolph van Ceulen, in 1610, in a heroic computation of
limited utility, found π to 35 decimal places using a polygon with 262 sides. This
impressed people so much that in the Netherlands π is still sometimes called the
Ludolphine number.

V-29. Suppose that cos x− sinx = 3/5. Find cos3 x− sin3 x.
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Solution. We could calculate cosx and sinx. Rewrite the given equation as cosx =
sinx + 3/5, square both sides, and use the identity cos2 x = 1 − sin2 x to obtain
the equation 2 sin2 x + sinx − 16/25 = 0. This can be solved for sinx, and after
some mildly tedious computation we find the answer. This would be the reasonable
approach if we were dealing for example with the equation 2 cosx − 3 sinx = 3/4.
But in our case it is tempting, because of the symmetry, to try

Another way: We have

cos3 x− sin3 x = (cosx− sinx)(cos2 x+ cosx sinx+ sin2 x).

Since cos2 x+ sin2 x = 1, we only need to find cosx sinx. But

9

25
= (cosx− sinx)2 = cos2 x− 2 cosx sinx+ sin2 x.

Thus cosx sinx = 8/25, and therefore cos3 x− sin3 x = 99/125.

V-30. A mountain rises from a large plain. Show how to find the height of
the mountain above the plain, using old-fashioned surveying equipment.

Solution. To find the height of a flagpole, choose a point P at an accurately mea-
sured distance d from the base of the flagpole, and find the angle of elevation of
the top of the pole from P . If this angle is θ, then the height of the pole is d tan θ.
(That’s not quite right. Let the distance of the eyepiece of the measuring instrument
from the ground be k. Then the height of the pole is k + d tan θ.)

With a mountain, the flagpole procedure can’t be used unless we are prepared
to do many miles of digging. Instead, take a point P on the plain, and another point
Q on the plain such that a vertical pole through P is on the line of sight between
Q and T , as in Figure 5.5. Measure the distance PQ, and call it d. Measure θ, the

B
P

Q

T

h

x d
θ φ

Figure 5.5: Measuring the Height of a Mountain

angle of elevation of T from P , and φ, the angle of elevation of T from Q. Assume
that the Earth is flat. This will not lead to a large error.

Let h be the height of the mountain, and let x be the distance from P to the
point B at the level of the plain which is directly beneath T . Neither h nor x
is directly measurable. But h/x = tan θ, and h/(x + d) = tanφ, and therefore
h = d tan θ tanφ/(tan θ − tanφ).
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Comment. Surveying is an ancient application of mathematics, and the inaccessible
mountain problem was surely often solved over the millenia. The oldest surviving
solution comes from Liu Hui (around 250). His Haidao suanjing (Sea Island Math-
ematical Manual) contains nine surveying problems. The first and simplest has to
do with finding, from the mainland, the height of a mountain on a sea island, and
the distance to the island.

V-31. A triangle has two 22.5◦ angles and its longest side is 2. Find the
area of the triangle without using a calculator.

Solution. We need to find the height of the triangle. The base angles are each
22.5◦; call this angle θ. The problem will be solved once we know tan θ.

Note that cos 2θ = 1/
√
2. Thus

tan2 θ =
2 sin2 θ

2 cos2 θ
=

1− cos 2θ

1 + cos 2θ
=

1− 1/
√
2

1 + 1/
√
2
.

After rationalizing the denominator, we find that tan2 θ = (
√
2 − 1)2. So the area

is
√
2− 1.

Another way: There are other ways to find tan θ by using trigonometric identities.
For example, we can use the double angle formula

tan 2θ =
2 tan θ

1− tan2 θ
.

Since tan(45◦) = 1, we find that tan2 θ + 2 tan θ − 1, and solve the quadratic
equation.

Another way: Use the Cosine Law. If a is the length of one of the short sides, then

4 = a2 + a2 − 2a2 cos 135◦

and therefore a2 = 4/(2+
√
2) = 4−2

√
2. By the Pythagorean Theorem, the square

of the height is 3− 2
√
2. It so happens that 3− 2

√
2 = (

√
2− 1)2, so the height is√

2− 1.

V-32. A cylindrical glass with inner radius 4 cm and inner height 12 cm
is full of water. (a) To the nearest tenth of a degree, through what angle
should we tilt the glass so that 70 cubic cm of water flow out? (b) What
about if we start with the water level 1 cm below the top?

Solution. (a) Let the angle of tilt be θ degrees. The amount that flows out is much
less than half the volume, so the tilt is small. In particular, the bottom of the glass
remains covered with water

At the point on the side of the glass where the water level goes down the most,
it goes down by an amount h, where h = 8 tan θ—see Figure 5.6. The volume of
a column of water of radius 4 and height h is 16πh. But only half this much has
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h
8

θ

θ

Figure 5.6: The Correct Angle of Tilt

spilled out, so the amount of water that flowed out is (16π)(8 tan θ)/2. Set this
equal to 70, and solve for tan θ. We get that tan θ is about 0.34815. The calculator
says that θ is about 19.9◦.

(b) Fill the glass with water. That requires adding 16π cubic centimeters. Then
pour out 16π + 70. Using the same idea as in part (a), we find that if the angle of
tilt is θ then tan θ = (16π + 70)/64π. Thus tan θ is about 0.59815, and θ is about
30.9◦.

Comment. If we want to pour out more than half of the water, the geometry
becomes more complicated.

V-33. Two circular steel wheels are joined by a tightly stretched leather
drive belt. The wheels have radius 2 and 3, and the distance between their
centers is 12. How long is the belt?

Solution. Look at Figure 5.7. The centers of the wheels are labelled A and B. Let
P , P ′ be the points where the belt ceases to be in contact with the left wheel, and
let Q and Q′ be the corresponding points for the right wheel. By symmetry, we can
concentrate on the top half of the belt. The line PQ is tangent to both circles, so

A

P

Q

F

P ′

Q′

Figure 5.7: The Length of the Drive Belt

∠APQ and ∠BQP are right angles. Drop a perpendicular from A to a point F on
BQ. Then PQ = AF . But BF = 1. By the Pythagorean Theorem, PQ =

√
143,

so the straight parts of the belt add up to 2
√
143.
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It remains to calculate the length of the curvy bits of the belt. Let θ be the
size (in radians) of ∠FAB. Then sin θ = 1/12.

So ∠PAP ′ = π+2θ, and therefore the length of belt wrapped around the small
circle is 2(π− 2θ), while 3(π+2θ) is wrapped around the large circle, for a total of
5π + 2θ.

The length of the belt is therefore 2
√
143+5π+2θ. It is finally time to use the

calculator. We have sin θ = 1/12. So (using the sin−1 key on the calculator, and
making sure we are in radian mode) we find that θ is roughly 0.083430086. The
total length is therefore about 39.7.

Comments. 1. We measured angles in radians for convenience. Take an arc that
subtends an angle θ at the center of a circle of radius r. If θ is measured in radians,
the length of the arc is rθ. If θ is measured in degrees, the expression for the length
is less attractive.

2. There is an interesting bonus to using radian notation. In our case we had
sin θ = 1/12, so sin θ is about 0.08333. In radians, θ turned out to be about
0.08343. So θ and sin θ are almost equal! Indeed (sin θ)/θ is about 0.999. In
general, if we use radian notation, and θ is not far from 0, then (sin θ)/θ is close to
1. We could have done the whole calculation, to high accuracy, without pressing
the sin−1 key!

3. We explore briefly a problem that may appear difficult. Let the wheels have
radius 2 and 3, and suppose that the belt has length 50. How far apart, approxi-
mately, are the centers of the wheels?

Let this distance be d. The argument used above can be adapted to show that

2
√

d2 − 1 + 5π + 2θ = 50,

where sin θ = 1/d. We can’t hope to find an exact expression for the solution.
What are we to do?

There are numerical techniques for finding solutions of quite general equations.
Sophisticated calculators have a Solve key that will do the job. But we can get by
without such a tool. For note that θ is small. Throw away that term and solve for
d. We find that d is about 17.17. Since sin θ and θ are nearly equal, θ is roughly
0.05824. Substitute this into the main equation, and solve again for d. We get
d = 17.117, an approximation good enough for all practical purposes.

V-34. By combining the identities for sin(x+y) and cos(x+y) we can show
that

tan(x+ y) =
tan x+ tan y

1− tanx tan y
.

Let α, β, and γ be the acute angles whose tangents are 1/2, 1/5, and 1/8.
Without using a calculator, find α+ β + γ.
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Solution. Using the formula for the tangent of a sum, we get

tan(α+ β) =
1
2 · 1

5

1− 1
10

=
7

9
.

Use the formula again, thinking of α+β+γ as (α+β)+γ. We get tan(α+β+γ) =
(7/9 + 1/8)/(1− 7/72). This simplifies to 1! But α+ β + γ is acute, so α + β + γ
has radian measure π/4.

Comment. This is one of a large family of formulas discovered by Euler. Until
quite recently, formulas related to this one, most notably Machin’s formula π

4 =
4 arctan 1

5 − arctan 1
239 , were standard tools for accurate calculation of π. What

made it all work is that when |x| is substantially below 1, the MacLaurin series

x− x3

3 + x5

5 − x7

7 + · · · converges rapidly to arctanx.

V-35. Cut off a strip of width w from a 1× 1 square, where w is chosen so
that the strip can be placed diagonally on what is left of the square, as in
Figure 5.8. Find w.

A B

C

P

Q

w

w

1
1

θ

Figure 5.8: Cutting a Strip off a Square

Solution. Most approaches lead to messy expressions with several square roots,
while trigonometric functions lead to a clean solution. Let labels be as in Figure 5.8.
Then AP = w cos θ and PC = sin θ. Also, AQ = w sin θ and QB = cos θ.

Working up from A, we find that w cos θ+sin θ = 1. Working to the right from
A, we find that w sin θ + cos θ + w = 1. We want w, but it is easier to find θ first.

Eliminate w using our two equations:

w =
1− sin θ

cos θ
=

1− cos θ

1 + sin θ
.

“Cross-multiply” and simplify, using the fact that 1 − sin2 θ = cos2 θ. We obtain
2 cos2 θ−cos θ = 0, so cos θ = 1/2. Now we can notice that θ = 60◦ or just compute
sin θ and then w. It turns out that w = 2−

√
3.
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V-36. Sightings were taken of the top of an apartment building from 100
meters from the base and from 500 meters from the base. The difference
between the angles of elevation was 30◦. Find the height of the building.
Hint: tan(α− β) = (tanα− tan β)/(1 + tanα tan β).

Solution. Let the height be h. For convenience, we measure in units of 100 meters.
Let α be the angle of elevation from 100 meters away, and β the angle of elevation
from 500 meters. Then tanα = h and tanβ = h/5. But α− β = 30◦. By using the
formula of the hint, we find that (h− h/5)/(1 + h2/5) = 1/

√
3, which simplifies to

h2 − 4
√
3h+ 5 = 0. This has the solutions h = 2

√
3±

√
7. The solution 2

√
3 +

√
7

gives a height of about 611 meters, implausibly large, so the height is about 81.8
meters.

Comment. We tacitly assumed that the two observation points are at the same
height. And unless sightings were taken from ground level, which is unlikely, we
need to add the height of the sighting instrument to the computed height.

V-37. By using the addition formula

cos(x+ y) = cos x cos y − sinx sin y,

we can express cos 3θ in terms of cos 2θ, cos θ, sin 2θ, and sin θ, and further
manipulation yields

cos 3θ = 4cos3 θ − 3 cos θ.

Use this formula and trigonometric function keys on the calculator to solve
the equation 4x3 − 3x = 1/2.

Solution. Let cos 3θ = 1/2. From the given formula, we find that cos θ is a root of
the equation 4x3 − 3x = 1/2. Since cos 3θ = 1/2, one possibility is 3θ = 60◦, so
θ = 20◦. It follows that x = cos 20◦ is a solution. The calculator says that this is
about 0.9396926, but that’s an ugly and therefore in the long run less useful answer.

There are a couple of approaches to the other solutions. One is to recall that
if a is a solution of the polynomial equation P (x) = 0, then x − a divides P (x).
For neatness, write a instead of cos 20◦. Do not use the calculator approximation
found above. We carry out the division, and find

4x3 − 3x− 1/2

x− a
= 4x2 + 4ax+ 4a2 − 3.

So to find the remaining roots, we find the roots of the quadratic equation 4x2 +
4ax + 4a2 − 3 = 0 in the usual way. The process of dividing by x − a once we
have found a root a is called depressing the degree. It is built into most computer
programs for approximating roots of polynomials.

For our polynomial there is a nicer idea than depressing the degree. We were a
little hasty in concluding 3θ = 60◦ from cos 3θ = 1/2. For we could have 3θ = 300◦,
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giving x = cos 100◦ as a solution. And we can go beyond 360◦, with 3θ = 420 and
x = cos 140◦. The three numbers cos 20◦, cos 100◦, and cos 140◦ are distinct, they
are all solutions of our equation. Since the equation is a cubic they must be all the
solutions.

Comments. Analysis of the equation 4x3−3x = 1/2 is a key step in proving that the
general angle cannot be trisected by straightedge and compass. What is actually
proved is that even the 60◦ angle can’t be so trisected.

The idea we used with 4x3−3x = 1/2 can be adapted to solve some other cubic
equations. We sketch the procedure. The equation x3 + ax2 + bx + c = 0 can be
changed to one with no x2 term by the change of variable x = y−a/3. And we can
multiply through by a non-zero constant, so we may assume that we are solving
the equation 4y3 − py = q.

Make the change of variable y = z/m, where m will be chosen later. The
equation becomes 4z3 − pm2z = qm3. We want pm2 = 3, that is, m =

√

3/p. (If
p = 0 then solving the cubic is trivial.) We end up with the equation 4z3 − 3z =
q(3/p)3/2. Call the right-hand side k. If |k| ≤ 1, then k = cos 3θ for some θ, and
we continue like we did in the case k = 1/2. If |k| > 1 then the method fails. This
method of solving some cubic equations was found by Viète in the late sixteenth
century.

The author was once asked a question that reduced to solving cubics of Viète’s
type. A formula was needed, for use with a spreadsheet. There was even some
money in it—not much, but at the time it bought a few bottles of cheap wine. And
there was pleasure in seeing an antique formula, probably not used for practical
purposes for many years, turn out to be useful. See also IV-69.

V-38. Let a > 1. Write cosha(t) for the function (at + a−t)/2, and sinha(t)
for (at − a−t)/2. (a) Let x = cosha(t) and y = sinha(t). Find x2 − y2,
simplifying as much as possible. (b) Express sinha(2t) in terms of sinha(t)
and cosha(t). (c) Let a = 10. Solve the equation cosha(t) = 20.

Solution. (a) Funny names for functions! We have x2 = (at + a−t)2/4. Expand,
noting that at · a−t = 1. So x2 = (a2t + 2+ a−2t)/4. In a similar way, we find that
y2 = (a2t − 2 + a−2t)/4. Subtract. Almost everything cancels, and x2 − y2 = 1.

(b) We have

sinha(2t) =
a2t − a−2t

2
= 2 ·

at + a−t

2
·
at − a−t

2
,

and therefore sinha(2t) = 2 cosha(t) sinha(t).

(c) The equation can be rewritten as 10t+10−t = 20. Let x = 10t. Then x+1/x =
20. This simplifies to x2 − 20x+ 1 = 0, which has the solutions x = 10±

√
99. So

t = log x = log(10±
√
99).

Comment. The functions cosha and sinha have properties strikingly reminiscent of
the cosine and sine functions. Basically, they are to the hyperbola x2 − y2 = 1 as
cosine and sine are to the circle x2 + y2 = 1. That explains the funny name: cosh
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stands for hyperbolic cosine. Almost always, a is taken to be e, the base for natural
logarithms, about 2.71828, and the functions are simply called cosh and sinh. All
of the familiar trigonometric identities have analogues in the “hyperbolic” world.

The hyperbolic functions have many applications. For example, a cable hanging
between two poles of equal height takes on a shape that can be described using
the cosh function. Some calculators permit evaluation of cosh and sinh with one
keypress.

It is tempting to mention now the beautiful and mysterious formulas cosx =
(eix + e−ix)/2 and sinx = (eix − e−ix)/2i, but we won’t.



Chapter 6

Sequences

Introduction

These problems are mainly about arithmetic and geometric sequences, that
is, sequences (an) that satisfy the recurrences an+1 = an+d and an+1 = ran
respectively. Many of the remaining questions deal with sequences given by
less familiar recurrences.

The solutions take it for granted that students are familiar with sums of
arithmetic and geometric progressions. That is regrettably not always true.
The main difficulty is that the basic facts are viewed as “formulas” rather
than ideas.

Look at 1 + 3 + · · · + 997 + 999, or any other arithmetic series with
positive terms. The way to understand the sum is to associate with it a
number of clear concrete images. There might be a number of men, having
respectively 1, 3, 5, . . . , 499 dollars to their name, and an equal number of
women, having 501, 503, . . . , 999 dollars. The two people who have 1 and
999 dollars pool their fortunes, as do the two people who have 3 and 997
dollars, and so on. There are now 250 joint accounts, each with $1000, and
therefore

1 + 3 + · · ·+ 997 + 999 = 250000.

There are other concrete ways of seeing what the sum of particular arith-
metic progressions ought to be, including various versions of stacking. At a
more algebraic level, note that

a+ (a+ d) + · · ·+ (a+ (n− 1)d) = an+ d (1 + 2 + · · ·+ (n− 1)) ,

so by the magic of linearity we need only calculate 1 + 2 + · · ·+ (n− 1).

186
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One could explain why 1 + 2 + · · · + n is equal to
(n+1

2

)

. (How many
ways are there of choosing two numbers from the n+ 1 numbers 0 to n? If
the bigger of the numbers is 1, there is 1 way of choosing the other number.
If the bigger is 2, there are 2 ways of picking the other number, and so on.
Finally, if the bigger is n, there are n ways of picking the other.) Everything
is connected to everything else.

If several sums are reasoned through in various ways, then one can know,
forever, what is going on in this corner of mathematics.

The chapter stresses telescoping series more than usual. The idea is
often presented as an isolated trick for finding

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+

1

(n− 1)n
,

but in fact it is a method with many uses. Problem VI-7, and several others
in this chapter, make it clear that telescoping series can be used to prove
the correctness of many of the standard formulas.

Problems and Solutions

VI-1. (a) Show that every multiple of 20 can be expressed as a sum of 10
consecutive odd integers. What about if the consecutive odd integers must
be positive? Generalize. (b) What about if 10 is replaced by 11?

Solution. (a) The usual idea for summing arithmetic progressions shows that

(2k + 1) + (2k + 3) + · · ·+ (2k + 19) = 10(2k + 10) = 20(k + 5).

By selecting the integer k appropriately, we can make 20(k+5) equal to any multiple
of 20. If k must be non-negative, then only the multiples of 20 greater than or equal
to 100 are representable.

Replace 10 by the positive even integer n. We have

(2k + 1) + (2k + 3) + · · ·+ (2k + 2n− 1) = 2n
(

k +
n

2

)

.

If the integer k is unrestricted, then any multiple of 2n is representable. If we
must have k ≥ 0, then only the multiples of 2n greater than or equal to n2 are
representable.

(b) Let n be odd. Note that

(2k + 1) + (2k + 3) + · · ·+ (2k + 2n− 1) = n(2k + n).

If the integer k is unrestricted, then 2k + n can be any odd integer, so any odd
multiple of n is representable. If we must have k ≥ 0, then the representable
numbers are the odd multiples of n greater than or equal to n2.
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Another way: The 10 odd integers from −9 to 9 have sum 0. To get a sum of 20q,
just add 2q to each number. If integers must be positive, then q ≥ 5 so 20q ≥ 100.
The same argument works if 10 is replaced by any even integer.

A mild variant works for 11, or indeed any odd integer. The 11 even integers
from −10 to 10 have sum 0. To get a sum of 11q, just add q to each of them.
But we want consecutive odd integers, so q must be odd. If the integers must be
positive, then q ≥ 11.

Comment. The second solution is quite geometric. It uses symmetry, which is at its
roots a visual notion. Note that for 11 we even (temporarily) lifted the requirement
that the numbers be odd in order to hang on to symmetry. And adding the same
thing to each number is geometric—we are just shifting a structure left or right.

It is a nice exercise to find purely pictorial arguments. Hint: Let O be the
origin and P = (18, 9). Look at the points with integer coordinates (dots) that are
in the first quadrant and on or to the left of line segment OP . Slide OP to the
right and count dots. Or slide the square of dots in Figure 2.5 in a northeastely
direction.

VI-2. Find an infinite geometric sequence all of whose terms come from 1,
1/2, 1/4, 1/8, and so on and whose sum is 1/60.

Solution. Let the first term a of our sequence be 1/2s and let the common ratio r
be 1/2t. We want

4

15
=

a

1− r
=

1/2s

1− 1/2t
=

2t−s

2t − 1
.

Since 60 = 4 · 15, putting t = 4 and s = 6 yields the desired sum.

VI-3. From sin(x+ y) = sinx cos y+ cos x sin y and the related identity for
sin(x− y) we conclude that

2 cos x sin y = sin(x+ y)− sin(x− y).

Use the above identity to show that if sin θ (= 0 then

cos θ + cos 3θ + cos 5θ + · · ·+ cos(2n − 1)θ =
sin 2nθ

2 sin θ
.

Hint: Multiply by 2 sin θ.

Solution. The given identity specializes to

(2 sin θ) cos(2k − 1)θ = sin 2kθ − sin(2k − 2)θ.

Let k range from 1 to n and add up. Note the cancellation on the right. We obtain

(2 sin θ)
(

cos θ + cos 3θ + · · · cos(2n− 1)θ
)

= sin 2nθ.

Finally, divide both sides by 2 sin θ.
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Comment. The same technique works for cos a1 + cos a2 + · · · cos an where a1, a2,
. . . an is any arithmetic progression, and also if cos is replaced by sin. There is
a deep structural connection between the exponential function and the sine and
cosine functions. The sum in this problem is closely connected to the sum of a
geometric series.

VI-4. Let a, ar, ar2, . . . , arn be a finite geometric sequence with a > 0 and
0 < r ≤ 1/2. Show that any term is greater than the sum of all the terms
that follow it.

Solution. We can use formulas. Let ark be a term of the sequence with k < n.
Then the sum of the terms after ark is ark+1 + ark+2 + · · ·+ arn. By a standard
formula this sum is

ark+1(1− rn−k)

1− r
.

We need to show that the above quantity is less than ark, or equivalently that

r(1 − rn−k)

1− r
< 1.

Since 1 − rn−k < 1, it is enough to show that r/(1 − r) ≤ 1. This is clear, for
r ≤ 1/2, and therefore 1− r ≥ 1/2.

Another way: We want to show that

ark+1 + ark+2 + · · ·+ arn < ark,

or equivalently that r + · · · + rn−k < 1. Since 0 < r ≤ 1/2, it is enough to show
that

1

2
+

1

22
+ · · ·+

1

2n−k
< 1.

This is geometrically clear. A grasshopper starts at one end of a stick of length 1,
hops a distance 1/2 toward the other end, then a distance 1/4, then a distance 1/8,
and so on. With each hop the grasshopper’s distance from the other end is divided
by 2, but the grasshopper can’t reach the other end in a finite number of hops.

Comment. The second solution doesn’t use the formula for the sum of a finite
geometric progression. In many cases, we do not know a closed form for the sum
of a sequence, so the analogue of the first approach is simply not available. Often
we need instead to compare, term by term, the sequence we are studying with a
simpler sequence whose behaviour is known.

VI-5. The sum a1 + a3 + a5 + · · · + a99 of the odd-numbered terms of the
finite arithmetic progression a1, a2, . . . , a99 is 200. Find the sum of the
even-numbered terms.
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Solution. The sum of the 50 odd-numbered terms and the sum of all the terms are
respectively

50
a1 + a99

2
and 99

a1 + a99
2

.

It follows that the sum of the even-numbered terms is 49(a1 + a99)/2. We have
been told that 50(a1 + a99)/2 = 200. So the sum of the even-numbered terms is
200(49/50), that is, 196.

Comment. The wording of the problem suggests that the sum of the even-numbered
terms is completely determined by the sum of the odd-numbered terms. If that’s
true—a big if!—then we can assume that the terms are all 200/50, so the sum of the
49 even-numbered terms is 196. That kind of reasoning is useful in multiple-choice
tests but not elsewhere.

Note for example that the sum of the even-numbered terms in the arithmetic
sequence a1, a2 is not determined by the sum of the odd-numbered terms: knowing
a1 tells us nothing about a2. In general, if we know the sum of the even-numbered
terms in the arithmetic sequence a1, a2, . . . , a2n, then we know nothing about the
sum of the odd-numbered terms.

VI-6. Show that for any positive integer n

1 +
1

1!
+

1

2!
+

1

3!
+ · · ·+

1

n!
< 2.8.

Solution. Use the calculator to add the first two terms, the first three, and so on
for a while. The sums, truncated to three decimal places, are 2.500, 2.666, 2.708,
2.716, 2.718, and 2.718. Things seem to be settling down—it looks as if we won’t
even get close to 2.8. But we need to prove that we won’t.

The key observation is that the terms are going down very fast, far faster than
the terms of a geometric sequence. More precisely,

1

3!
=

(

1

2!

)(

1

3

)

,
1

4!
<

(

1

2!

)(

1

3

)2

,
1

5!
<

(

1

2!

)(

1

3

)3

,

and so on. In particular, our sum is less than

2 +

(

1

2!

)(

1 +
1

3
+

1

9
+

1

27
+ · · ·+

1

3n−2

)

.

The infinite geometric series 1 + 1/3 + 1/9 + · · · has sum 3/2. We conclude that
our sum is less than 2 + (1/2)(3/2), that is, 2.75.

Comment. The full sum

1 +
1

1!
+

1

2!
+ · · ·+

1

n!
+ · · ·

is the base e for natural logarithms, one of the most important numbers in all of
mathematics. It turns out that e is about 2.718281828 (the repetition of digits is
an “accident,” e is not a rational number). By using ideas like the ones used in
solving the problem, we can easily compute e to guaranteed high accuracy.



CHAPTER 6. SEQUENCES 191

VI-7. The sum sn of the first n terms of a sequence is equal to n2(n+1)2/4.
Find a simple expression for the n-th term of the sequence.

Solution. Let an be the n-th term of the sequence. Then

an = sn − sn−1 =
n2(n+ 1)2

4
−

(n− 1)2n2

4
= n3.

Comment. It is much more interesting to read the result “backwards.” Note that if
sn denotes the sum of the first n terms of any sequence, then because of wholesale
cancellation, usually called telescoping, we have

(s1 − s0) + (s2 − s1) + (s3 − s2) + · · ·+ (sN − sN−1) = sN − s0.

In the case sn = n2(n+ 1)2/4, we have sn − sn−1 = n3, so

13 + 23 + 33 + · · ·+N3 =
N2(N + 1)2

4
.

Similarly, we can prove the correctness of the usual formula for the sum of the first
N perfect squares from the identity

(n2)(n+ 1) + n(n+ 1)2

6
−

(n− 1)2(n) + (n− 1)(n2)

6
= n2.

And we can prove the correctness of the usual formula for the sum of the first N
terms of the geometric sequence with first term 1 and common ratio r (= 1 by using
the identity

rn

r − 1
−

rn−1

r − 1
= rn−1.

VI-8. By a suitable choice of + signs and − signs, can we make

±1± 2± 3± · · · ± 99± 100

equal to 3999? What about 4000?

Solution. However we put in + or − signs, we have a “sum” of 50 odd numbers
and 50 even numbers. A sum of 50 odd numbers is even, as is any sum of even
numbers, so 3999 is not representable in the desired form.

To get a representation of 4000, play with the numbers. First try to get close
to 4000 by summing the integers from somewhere to 100. For example, if we sum
from 46 to 100, the result is 4015. Subtract 1 + 2 + 3 + 4 + 5 from this, and we
have reached 4000. But we need to use also the 40 numbers from 6 to 45 without
disturbing the sum. This is easy: just add (6− 7− 8 + 9), and (10− 11− 12+ 13),
and so on up to (42−43−44+45). There are many other representations of 4000.
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Comment. More generally, what numbers N are representable by expressions of
the form ±1± 2± 3± · · · ± n, where n is given?

There are size restrictions on N . If we use only plus signs, we can only get to
n(n+1)/2, so |N | ≤ n(n+1)/2. There is also a parity restriction. Whatever choice
of signs we make, the “sum” is even if 1 + 2 + · · ·+ n is even, and odd otherwise.
But the sum of the first n positive integers is n(n+1)/2, and this is even precisely
if one of n or n+1 is a multiple of 4. So if N is representable, then N must be even
if n leaves a remainder of 0 or 3 on division by 4, and N must be odd otherwise.

It can be shown that the restrictions of the preceding paragraph are the only
restrictions. So for example since 100 is divisible by 4 and 4000 is smaller than 5050
and even, 4000 had to be representable. It is usually not hard to find an explicit
representation of a representable number N but sometimes experimentation and
ingenuity are required. Problems of this type, for various values of n and N , make
good concrete computational exercises.

VI-9. Let a1 = 1, and for n ≥ 1 let an+1 =
√
90 + an. Show that for all n

0 < 10− an+1 <
10− an

10
.

Solution. We have

10− an+1 = 10−
√
90 + an =

10− an
10 +

√
90 + an

(we multiplied “top” and “bottom” by 10 +
√
90 + an to get from the second ex-

pression to the third).
Since 10 − a1 is positive, the result above shows that 10 − a2 is positive, but

then 10 − a3 is positive, and so on forever. And since 10 +
√
90 + an > 10, we

conclude that 10− an+1 < (10− an)/10.

Comment. So an stays under 10, and its distance from 10 is divided by more than
10 each time, indeed by more than 19.5, since 10 +

√
90 + an > 19.5. We conclude

that the sequence a1, a2, a3, . . . approaches 10 rapidly. If we start with a1 > 10,
there is again a rapid approach to 10, this time from above.

The fact that an is always under 10 can be proved without rationalizing the
numerator. We have a1 < 10. But because a1 < 10, we have

a2 =
√
90 + a1 <

√
90 + 10 = 10.

In the same way, from the fact that a2 < 10 we conclude that a3 < 10, which leads
to a4 < 10, and so on forever.

VI-10. Let an be the integer nearest to
√
n. Calculate

1

a1
+

1

a2
+

1

a3
+ · · · +

1

a999
.
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Solution. Using a calculator if necessary, find a1, a2, and so on. The first few ai
are 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5. There are two 1’s, four
2’s, six 3’s, eight 4’s. We show that the pattern continues: there are 2k values of n
such that an = k.

The square root of an integer can’t be halfway between two integers, so an = k if
and only if k−1/2 <

√
n < k+1/2. If we square everything, we obtain equivalently

k2 − k + 1/4 < n < k2 + k + 1/4. So n ranges from k2 − k + 1 to k2 + k; there are
2k integers in this interval.

We can now evaluate the sum efficiently. Note that 1/a1+1/a2 = 1/1+1/1 = 2,
and 1/a3 + 1/a4 + 1/a5 + 1/a6 = 4/2 = 2, 1/a7 + · · ·+ 1/a12 = 6(1/3) = 2 and so
on.

The largest k such that k2+k ≤ 999 is 31. So the sum can be broken up into 31
sums each equal to 2, plus the terms 1/a993 to 1/a999, that is, 7 terms each equal
to 1/32. The full sum is therefore 62 + 7/32.

VI-11. Note that 32 +42 = 52 and 102 +112 +122 = 132 +142. Find seven
consecutive positive integers such that the sum of the squares of the first
four is equal to the sum of the squares of the last three. Generalize.

Solution. It is convenient to let the seven numbers be n− 3, n− 2, n− 1, n, n+1,
n+ 2, and n+ 3. Then n must satisfy the equation

(n− 3)2 + (n− 2)2 + (n− 1)2 + n2 = (n+ 1)2 + (n+ 2)2 + (n+ 3)2.

Expand and simplify. We obtain n2−4n(1+2+3) = 0. Since n (= 0, it follows that
n = 4(1+2+3) = 24. So there is exactly one example, namely 212+222+232+242 =
252 + 262 + 272.

In general, we look for 2k + 1 consecutive positive integers such that the sum
of the squares of the first k+1 is equal to the sum of the squares of the last k. Let
the middle number be n. Just as in the case k = 3,

(n− k)2 + · · ·+ (n− 1)2 + n2 = (n+ 1)2 + · · ·+ (n+ k)2.

Expand and simplify. We obtain the equation

n2 − 4n(1 + 2 + · · ·+ k) = 0.

Since n (= 0, we have n = 4(1 + 2 + · · ·+ k) = 2k(k + 1).

Comment. If instead we let the numbers be n, n + 1, . . . , n + 6, then after some
work we arrive at n2 − 18n − 63 = 0, whose only positive root is 21. But the
calculation takes longer and the general case is far less obvious. A symmetrical
choice of names often pays off.

VI-12. Let a0 = 0, a1 = 1, and for n ≥ 1 let

an+1 = 2an − an−1 + 2.

Find a simple formula for an and show that it is correct.
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Solution. Compute for a while:

a2 = 2− 0 + 2 = 4, a3 = 8− 1 + 2 = 9, a4 = 16, and a5 = 25.

It is reasonable to conjecture that an = n2 for all n. To prove this, let bn = n2. We
need to show that the sequences a0, a1, a2, . . . and b0, b1, b2, . . . are the same.

It is easy to check that b0 = a0 and b1 = a1. Also,

2bn − bn−1 + 2 = 2n2 − (n− 1)2 + 2 = n2 + 2n+ 1,

and therefore bn+1 = 2bn − bn−1 + 2. Since the two sequences begin in the same
way and satisfy the same recurrence formula, they are the same everywhere.

VI-13. Suppose that x (= −1, and let S be the infinite sum

x

(1)(1 + x)
+

x2

(1 + x)(1 + x+ x2)
+

x3

(1 + x+ x2)(1 + x+ x2 + x3)
+ · · · .

Find a simple expression for S. The answer will look different when |x| < 1
than when |x| > 1.

Solution. Note that

1

1 + x+ · · ·+ xk−1
−

1

1 + x+ · · ·+ xk
=

xk

(1 + x+ · · ·+ xk−1)(1 + x+ · · ·+ xk)
.

Add up from k = 1 to k = n. There is wholesale cancellation, and the sum Sn of
the first n terms is given by

Sn = 1−
1

1 + x+ · · ·+ xn
.

Now we study the behaviour of 1/(1 + x+ · · ·+ xn) as n grows without bound (as
n → ∞.)

Suppose first that |x| < 1. Then 1+x+ · · ·+xn approaches 1/(1−x) as n → ∞.
So Sn approaches 1− (1− x), and therefore S = x.

Let x = 1. Then Sn = 1− 1/(n+1). As n → ∞, Sn → 1, and therefore S = 1.
If x > 1, then 1 + x+ · · ·+ xn > n+ 1, so again S = 1.

Suppose finally that x < −1. By the usual formula for the sum of a finite
geometric progression,

1 + x+ · · ·+ xn =
xn+1 − 1

x− 1
.

As n → ∞, |xn+1| grows large without bound, and therefore so does |1+x+· · ·+xn|,
so again S = 1.

VI-14. The sum of an infinite geometric progression is 2. Find all possible
values of the first term.
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Solution. Let the first term be a and let the common ratio be r. Then the sum of
all the terms is a/(1− r). Thus a/(1− r) = 2, and therefore r = 1− a/2.

But (apart from the dull case a = 0) the sum of an infinite geometric progression
makes sense only when−1 < r < 1. So−1 < 1−a/2 < 1, and therefore 0 < a < 4.

VI-15. Let k be positive. Show that

1

2
√
k + 1

<
√
k + 1−

√
k <

1

2
√
k

and us e these inequalities to give a rough estimate of S, where

S = 1 +
1√
2
+

1√
3
+

1√
4
+ · · ·+

1√
5000

.

Solution. We rationalize the numerator and obtain

√
k + 1−

√
k =

(
√
k + 1−

√
k)(

√
k + 1 +

√
k)

√
k + 1 +

√
k

=
1

√
k + 1 +

√
k
.

The desired inequalities now follow from the fact that

2
√
k <

√
k + 1 +

√
k < 2

√
k + 1.

To estimate S, use first the inequality
√
k + 1−

√
k < 1/2

√
k. Let k = 1, 2, 3,

and so on up to 5000, and add up. Note the wholesale cancellation. We obtain

√
5001− 1 <

1

2
√
1
+

1

2
√
2

1

2
√
3
+ · · ·+

1

2
√
5000

,

and conclude that S > 139.4.
Now use the inequality 1/2

√
k + 1 <

√
k + 1 −

√
k). A calculation similar to

the one above shows that S < 2
√
5000 − 1, so S < 140.5. We conclude that S is

roughly 140.

Comment. The inequalities are least “sharp” when k is small. So to find more
accurate estimates of S, add up on the calculator something like the first dozen
terms, and use the inequalities to estimate the rest of the sum.

VI-16. Let a1, a2, . . . , a100 be integers. Show that

|a1 − a2|+ |a2 − a3|+ |a3 − a4|+ · · · + |a99 − a100|+ |a100 − a1|

is even.
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Solution. Let beads labelled 1, 2, 3, . . . , 100 be arranged around a circular necklace,
where bead i is white if ai is even and black if ai is odd. Let 101 be another name
for bead 1. Then |ai − ai+1| is odd if the neighbouring beads i and i + 1 are of
different colours, and |ai − ai+1| is even if beads i and i+ 1 have the same colour.

Travel around the necklace, from bead 1 all the way back to bead 1. The number
of colour changes is even—if it weren’t, bead 1 would be of a different colour from
itself! So evenly many among the numbers |a1 − a2|, |a2 − a3|, . . . , |a100 − a1| are
odd. Since the sum of an even number of odd numbers is even, as is the sum of
any number of even numbers, the desired result follows.

Another way: We prove that if a1, a2, . . . , an is a sequence of integers, and b1, b2,
. . . , bn is any rearrangement of that sequence, then

|a1 − b1|+ |a2 − b2|+ · · ·+ |an − bn|

is even. In any sum, if you replace a number by one of the same parity—that is,
replace an even number with an even number, or an odd with an odd—then the
parity of the sum doesn’t change.

In general, |z| is even if and only if z is even. Therefore our sum has the same
parity as

(a1 − b1) + (a2 − b2) + · · ·+ (an − bn).

But since the bi are just the ai in some order, the above sum is 0, which is even.
So the original sum is even.

VI-17. Find a simple expression for

1

2!
+

2

3!
+

3

4!
+ · · ·+

98

99!
+

99

100!
.

Solution. Add the first two terms and simplify. The result is 5/6. Similarly, the
sum of the first three terms is 23/24, and the sum of the first four terms is 119/120.
And lest we forget, the sum of the first “one terms” is 1/2. It is natural to conjecture
that the sum of the first n terms is 1− 1/(n+ 1)!.

To prove this, let an = 1− 1/(n+ 1)!. Calculate an − an−1. We get

an − an−1 =

(

1−
1

(n+ 1)!

)

−
(

1−
1

n!

)

=
n+ 1

(n+ 1)!
−

1

(n+ 1)!
=

n

(n+ 1)!
.

Thus the original sum is equal to

(a1 − a0) + (a2 − a1) + (a3 − a2) + · · ·+ (an − an−1).

Note that a0 = 0 and that almost everything cancels. The sum is an, exactly as
conjectured.

Comment. Equivalently, we can pull the identity

k

(k + 1)!
=

k + 1

(k + 1)!
−

1

(k + 1)!
=

1

k!
−

1

(k + 1)!
.
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out of a hat, and sum from k = 1 to k = 99, noting the telescoping. The result is
1 − 1

100! . But it is more natural to make a conjecture about the sum and then use
an essentially mechanical procedure to prove the conjecture.

VI-18. Show that no geometric sequence can have in it all three of the
numbers 3, 4, and 5.

Solution. Suppose to the contrary that there is a geometric sequence which contains
our three numbers. Without loss of generality we may assume that 3 is the first
term of the sequence. Let r be the common ratio. Then 4 = 3rm and 5 = 3rn for
some positive integers m and n.

Raise both sides of the first equation to the n-th power and both sides of the
second equation to the m-th power. We obtain

4n = 3nrmn and 5m = 3mrmn.

Use the above equations to eliminate the term rmn. We obtain

3m4n = 3n5m.

But this equation doesn’t have positive integer solutions, since 2 divides the left-
hand side but not the right-hand side.

VI-19. Find a simple expression for

1 + 11 + 111 + 1111 + · · · + 111 . . . 111,

where the last number in the sum has 100 ones.

Solution. The number with n 1’s in its decimal expansion is equal to (10n − 1)/9.
We first calculate

(101 − 1) + (102 − 1) + · · ·+ (10100 − 1).

By rearranging the above sum, we get

(101 + 102 + · · ·+ 10100)− 100.

The first part is the sum of a geometric progression with first term 10 and common
ratio 10. By a standard result, this sum is (10101 − 10)/9. Simplify and divide by
9. The required sum is (10101 − 910)/81.

Comment. An integer whose decimal representation contains only 1’s is called a
repunit. There are many puzzles and problems about repunits. Puzzles about the
decimal representation of numbers are often mathematically uninteresting, since 10
is a boring number. But repunits have “structure,” since they are the numbers of
the form (10n−1)/9, and we can generalize by replacing 10 by any integer b > 1.
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VI-20. The product of the first five terms of a geometric progression is 2.
The product of the first ten terms is 128. Find the product of the first fifteen
terms.

Solution. Let a be the first term and r the common ratio. The product of the first
five terms is a5r1+2+3+4, that is, a5r10. Similarly, the product of the first ten terms
is a10r45, and the product of the first fifteen is a15r105.

So a5r10 = 2 and a10r45 = 128. We could solve for r and then for a, but that’s
not necessary. For

a15r105 =

(

a10r45
)3

(a5r10)3
,

and therefore the product of the first fifteen terms is (128/2)3.

Another way: If a were negative, then the product of the first five terms would
be negative, but it isn’t. If r were negative, then the product of the first ten
terms would be negative, but it isn’t. So all terms are positive, and we can take
logarithms. Any base will do, but base 2 is the most natural.

We have log2(ar
n) = log2 a + n log2 r. Taking logarithms transforms the ge-

ometric progression into an arithmetic progression, and products into sums—that
is, after all, what logarithms are about. Let b, b + d, . . . be the sequence of the
logarithms of our geometric progression. The first five terms add up to log2 2, that
is, 1, so 5b+ 10d = 1. Similarly, 10b+ 45d = 7. We want 15b+ 105d.

We could solve the system of two linear equations and find b and d. More
directly, note that 15b+105d = 3(10b+45d)−3(5b+10d). It follows that 15b+105d =
18. So the logarithm of the product of the first fifteen terms is 18, and therefore
that product is 218.

VI-21. Divide the positive integers into groups as follows: 1; 2, 3; 4, 5, 6;
7, 8, 9, 10; 11, 12, . . . . Find the sum of the numbers in the fiftieth group

Solution. First find the smallest member of group 50. Altogether, groups 1 through
49 have 1 + 2 + · · · + 49 members, so group 50 begins with 1226, and ends with
1275. There are 50 integers in the group, with average value (1226 + 1275)/2. For
the sum, multiply by 50. We get 62525.

Comment. The first number in the k-th group is (k−1)k/2+1, and the last number
in the k-th group is k(k + 1)/2, for an average of (k2 + 1)/2. Thus the sum of the
numbers in the k-th group is k(k2 + 1)/2.

The same type of question can be asked for any arithmetic progression. An
interesting example is 1; 3, 5; 7, 9, 11; 13, 15, . . . . In that case, the sums of the
numbers in each group are 1, 8, 27, . . . , the perfect cubes. It is not hard to deduce
that the sum of the first n positive cubes is the square of the sum of the first n
positive integers.

VI-22. Find an increasing sequence of nine positive odd integers which add
up to 1815 and such that the middle number is as big as possible.
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Solution. The four smallest must add up to at least 1 + 3 + 5 + 7, that is, 16. If
2n+ 1 is the middle number, then the sum of the four that are larger than 2n+ 1
is at least (2n+3)+ (2n+5)+ (2n+7)+ (2n+9). Add up all the terms. The sum
is at least 10n+ 41, and therefore 10n+ 41 ≤ 1815. Thus 10n ≤ 1774.

But n is an integer, so n ≤ 177, and therefore the middle number is no bigger
than 355. Finally, we look for 9 odd numbers, the middle one of which is 355, that
add up to 1815. The sequence 1, 3, 5, 7, 355, 357, 359, 361, 367 works. There are
others.

VI-23. Compute 12 − 22 + 32 − 42 + · · ·+ 9972 − 9982 + 9992. Generalize.

Solution. Rewrite the sum as

(12 − 02) + (32 − 22) + · · ·+ (9972 − 9962) + (9992 − 9982).

Note that (a+ 1)2 − a2 = 2a+ 1. So we want to compute

(1 + 2 · 0) + (1 + 2 · 2) + · · ·+ (1 + 2 · 996) + (1 + 2 · 998).

This is the sum of an arithmetic sequence with 500 terms. The terms average out
to 999, so the sum is 499500.

The sum 11 − 22 + 32 − 42 + · · ·− (2n)2 + (2n+ 1)2 is computed in exactly the
same way. The result is (2n+ 1)(n+ 1).

Another way: If we happen to know that in general

12 + 22 + 32 + · · ·+ k2 =
k(k + 1)(2k + 1)

6
,

(a fact that is proved in VI-7, in VI-37 and also in VI-51) there is an alternate
approach. Note that

22 + 42 + · · ·+ 9982 = 4(12 + 22 + · · ·+ 4992).

Our sum is therefore equal to

(12 + 22 + · · ·+ 9992)− (2)(4)(12 + 22 + · · ·+ 4992).

A short calculation yields 499500.

Comment. The second solution is, for a number of reasons, less attractive than the
first. For one thing, it relies on information about sums of squares which, though
“standard,” is more complicated than the fact we are trying to establish!

The actual numerical calculation at the end is more unpleasant. Also, the
answer, a number of modest size, is expressed as the difference of two much larger
numbers. Because of calculator limitations, it is best to avoid such differences.

VI-24. Find four different numbers in arithmetic progression whose sum is
equal to the sum of their squares.



CHAPTER 6. SEQUENCES 200

Solution. To use an old-fashioned word, the problem is indeterminate, that is, it
has more than one answer. Start with 1, 2, 3, 4. Their sum is 10 and the sum
of their squares is 30. Multiply each of 1, 2, 3, 4 by a scale factor s. The sum is
now 10s and the sum of the squares is 30s2. To make these equal, set s = 1/3.
Instead of starting with 1, 2, 3, 4, we can start with any four distinct real numbers
in arithmetic progression whose sum is not 0.

VI-25. Let a1, a2, a3, . . . , a99 and b1, b2, b3, . . . , b99 each be rearrangements
of the sequence 1, 2, 3, . . . , 99. Show that

(a1 − b1)(a2 − b2)(a3 − b3) · · · (a99 − b99)

is even.

Solution. Before trying to write out an argument, we should experiment with num-
bers much smaller than 99, such as 3 and 4 and 5. With 4, can we arrange for the
analogous product to be odd? Certainly. Let one of the rearrangements be 1, 2, 3,
4 and the other 2, 1, 4, 3. Each of the differences is odd, so their product is odd.

What about with 3? No matter what we try, an odd number ends up paired
with an odd number, and thus we get an even product. What about with 5? We
make the problem more concrete as follows.

On one side of a room, there are 5 people from class A, three boys wearing
numbers 1, 3, 5 and two girls wearing numbers 2 and 4. On the other side of the
room are 5 people from class B, again three boys and two girls, with the same
numbering scheme. People from class A are supposed to pair up with people from
class B to dance. No matter how the pairing is done, some boy will be paired with
a boy—this is obvious, there are just too many boys.

We now write out the idea more formally, for 99 people on each side of the
room. Note that 50 of the ai are odd, and only 49 of the bi are even. So there is at
least one i for which both ai and bi are odd. But then ai− bi is even, and therefore
so is our product.

Another way: Let ci = ai − bi. The sums of the ai and of the bi are equal, so the
sum of the ci is 0. In particular, the sum of the ci is even. But there are 99 (an
odd number) of ci, and therefore not all the ci can be odd. Thus ci is even for at
least one i, and hence our product is even.

Comment. The second solution is short and slick—maybe too slick. The first solu-
tion arises more naturally out of consideration of the situation.

VI-26. Find the sum of the series

1

1
+

1

2
+

1

4
+

1

5
+

1

8
+

1

10
+

1

16
+

1

20
+ · · · .

The denominators are all positive integers which have no prime divisor other
than 2 or 5.
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Solution. First add up the fractions whose denominator is a power of 2. So we
want the sum of the geometric series 1 + 1/2 + 1/4 + · · · . This sum is 2.

Next add up the fractions whose denominator is divisible by 5 but by no higher
power of 5. That sum is (1/5)(1 + 1/2 + 1/4 + · · · ), that is, 2/5. Then add up the
fractions whose denominator is divisible by 25 but by no higher power of 5. This
sum is 2/25. Continue in this way forever.

Finally, calculate the sum of the infinite geometric series 2 + 2/5 + 2/25 + · · · .
This sum is 5/2.

Another way: Imagine expanding out the product
(

1 +
1

2
+

1

4
+

1

8
+ · · ·

)(

1 +
1

5
+

1

25
+

1

125
+ · · ·

)

.

We obtain precisely the sum of the fractions 1/n where n has no prime divisor other
than 2 or 5. The two infinite geometric series have sum 2 and 5/4 respectively. Now
multiply.

Comments. 1. The second solution is a bit shorter, and generalizes nicely. Let
p1, p2, . . . , pk be distinct primes, and let S be the sum of all numbers 1/n where
n ranges over the positive integers which have no prime factor other than the pi.
Then

S =

(

1 +
1

p1
+

1

p21
+ · · ·

)(

1 +
1

p2
+

1

p22
+ · · ·

)

· · ·
(

1 +
1

pk
+

1

p2k
+ · · ·

)

.

Now sum the k infinite geometric series above. We get

1

S
=

(

1−
1

p1

)(

1−
1

p2

)

· · ·
(

1−
1

pk

)

.

The idea of this solution is due to Euler, the greatest mathematician of the eigh-
teenth century. Elaborate variants have been used to study the distribution of
primes ever since.

2. We operated with infinite sums as if they were long finite sums, and in particular
rearranged the order of summation freely. That can be done without risk for series
that only have positive terms. But this kind of rearrangement may be illegitimate
in some cases. For example, it turns out that

1−
1

3
+

1

5
−

1

7
+ · · · =

π

4
,

but the series can be rearranged so as to have sum 1024, or any other number we
like!

VI-27. Male bees have only one parent—a mother, of course—while female
bees have two, one of each sex. Bea, a female bee, is working on her family
tree. Find the largest number of female ancestors that Bea could have who
exactly ten generations back from her.
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Solution. Draw a diagram, in this case a family tree. We are only tracing back for
ten generations, so numbers stay small. But we need to stay organized and look
carefully at what happens one, two, three, and four generations back. After a while
we get structural insight, and everything becomes clear.

Let Fn be the largest number of female ancestors that Bea could have who are
exactly n generations back from her, and let Mn be the corresponding number of
male ancestors. Bea has one mother and one father, so F1 = M1 = 1. It follows
that F2 = 2 and M2 = 1, and therefore F3 = 3 and M3 = 2, and therefore F4 = 5
and M4 = 3.

In general, the reproductive habits of bees are summarized by the recurrences

Fn+1 = Fn +Mn, and Mn+1 = Fn.

These two recurrences can be turned into a computer program, and Fn can be
calculated for reasonable-sized n (after a while, the numbers are enormous). It is
not hard to compute up to n = 10 by hand, but first we eliminate the males from
the equation.

Replace n by n + 1 in the first equation; so Fn+2 = Fn+1 + Mn+1. Since
Mn+1 = Fn, we obtain

Fn+2 = Fn+1 + Fn,

the famous recurrence that produces the Fibonacci sequence and related sequences.
Note that F1 = 1 and F2 = 2. So the sequence goes 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,
144, and so on, and F10 = 89.

Comments. 1. In most cases, because of inbreeding, the number of different female
ancestors at exactly 10 generations back is less than 89. And F100 is exceedingly
large; the ancestors 100 generations back can’t possibly be all different.

2. For those familiar with matrices, the recurrences have an interesting matrix
interpretation. Let

A =

(

1 1
1 0

)

and Vn =

(

Fn

Mn

)

.

The recurrences can be rewritten as Vn+1 = AVn. In particular, V2 = AV1, V3 =
A(AV1) = A2V1, and in general Vn = An−1V1. From the matrix point of view, the
sequence of vectors V1, V2, V3 and so on feels like a geometric sequence. Everything
is connected to everything else!

VI-28. Draw a 1 × 1 square. Next to it, place a second square with side
three-fifths the side of the first square. Next to that, place a third square
with side three-fifths the side of the second square, and go on like that
forever. Find the total area covered by the squares. (Please see Figure 6.1.)
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A B

Figure 6.1: Summing Infinitely Many Squares

Solution. We calculate the areas of the successive squares. The first square has area
1. The second has side t, where t = 3/5, and therefore it has area t2. Similarly, the
third square has area t4, the fourth has area t6, and so on.

We need to compute the infinite sum 1 + t2 + t4 + t6 + · · · . By the standard
formula for the sum of an infinite geometric progression, this sum is 1/(1− t2). For
t = 3/5, the sum is 25/16.

Another way: Let the region covered by the squares be C, and let c be its area. Then
C can be viewed as a 1 × 1 square, with a three-fifths scale version of C appended
on the right. But a linear scale factor of 3/5 scales areas by the factor (3/5)2, and
therefore

c = 1+
9c

25
.

Solve for c. It turns out that c = 25/16.
As a variant, we can enlarge C by a scale factor of 5/3. So the new area is

(5/3)2c. The scaled region consists of a (5/3)× (5/3) square, together with a copy
of C. We obtain the equation 25c/9 = 25/9 + c and then solve for c.

Comment. In the second solution we used a geometric trick and the nowadays
fashionable notion of self-similarity to sum the series. The idea is the same as the
usual method in which we look at a+ ar + ar2 + · · · , let the sum be S, note that
Sr = ar + ar2 + ar3 + · · · , and conclude that S − Sr = a. But the squares version
feels more concrete, less the result of symbol manipulation. The same argument
can be used to find the sum a + ar + ar2 + · · · for any r with 0 < r < 1. Instead
of using 3/5 as the linear scale factor, we use

√
r.

We can get additional information out of Figure 6.1. Let r = 3/5. The length of
AB is the sum 1+ r+ r2+ · · · . A similar triangles argument, or a slope calculation
using the upper right corners of the two largest squares, shows that this length is
1/(1− r).

VI-29. Look at the sequence 1, 2, 3, 6, 7, 14, 15, . . . . (To get the “next”
term, alternately double and add 1.) Find the 100-th term. Find the sum
of the first 100 terms.
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Solution. Let the n-th term of the sequence be an. Suppose first that n is odd, say
n = 2k − 1. Note the pattern 1, 3, 7, 15, . . . , which suggests that a2k−1 may be
2k − 1.

We give an informal argument that the pattern continues. Suppose that we
hired a consultant who did an expensive series of calculations and reported that
a1 = 21 − 1, a3 = 22 − 1, a5 = 23 − 1, and so on up to a75 = 238 − 1. Then the
money ran out.

Can we check cheaply whether the pattern still holds when k = 39? To get a76
we double a75. So a76 = 239 − 2. Then we add 1 to find a77, so a77 = 239 − 1. It
follows that the pattern continues to hold when k = 39. Go quickly to the next k,
by doubling and adding 1. The result is 240 − 1, so yes, things are fine here too.
And so on.

Since a2k−1 = 2k − 1, it follows that a2k = 2k+1 − 2, and in particular a100 =
2101 − 2.

To add up the first 100 terms, note that a2k = 2a2k−1, and therefore a2k−1 +
a2k = 3a2k−1. So the required sum is

3(1 + 3 + · · ·+ (250 − 1)), that is, 3(2 + 4 + 8 + · · ·+ 250)− 150.

Finally, use standard facts about 1 + 2 + 4 + · · ·+ 250 to conclude that our sum is
3 · 251 − 156.

Comment. The argument that uses a hypothetical consultant is an attempt to cap-
ture the idea of mathematical induction without introducing “theoretical” material
about properties S(n), and S(k) implying S(k + 1). That part can be done after
we really know what induction is about.

VI-30. Let an be the n-digit number whose first n−1 digits are 3 and whose
last digit is 5. What does the decimal representation of a2n look like?

Solution. Calculate 52, 352, 3352, 33352. From the results, it is natural to conjec-
ture that the decimal expansion of a2n consists of n− 1 consecutive 1’s followed by
n 2’s, and finally a 5.

We could prove this conjecture by looking carefully at the usual multiplication
process. But it is easier to note that the n-digit number all of whose digits are 3
is (10n − 1)/3, and therefore an = (10n − 1)/3 + 2 = (10n + 5)/3. It follows that
a2n = (10n + 5)2/9. But

(10n + 5)2 = 102n + 10n+1 + 25 = (102n − 1) + (10n+1 − 1) + 27.

Divide by 9. The result is x + y + 3 where x has decimal expansion that consists
of 2n consecutive 1’s, while y has n+ 1 consecutive 1’s. Add x and y in the usual
way. We get n− 1 consecutive 1’s followed by n+ 1 2’s. Now add the 3.

VI-31. The sequence (qn) is defined as follows: q1 = 1, and for any n ≥ 1,
qn+1 = qn + 3n. Find an explicit formula for qn in terms of n.
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Solution. We have q2 = q1 + 3 · 1, q3 = q2 + 3 · 2, q4 = q3 + 3 · 3, and so on, with
finally qn = qn−1 + 3 · (n − 1). Add up the left-hand sides, add up the right-hand
sides. We get

q2 + · · ·+ qn = q1 + · · ·+ qn−1 + 3 (1 + · · ·+ (n− 1)) .

Now cancel q2 + · · ·+ qn−1 from both sides:

qn = 1 + 3 (1 + 2 + · · ·+ (n− 1)) = (3n2 − 3n+ 2)/2.

Another way: Guess, somehow, that the answer looks like an2 + bn + c for some
constants a, b, and c. We know that q1 = 1, q2 = 4, and q3 = 10. When we
substitute in turn 1, 2, and 3 for n in the formula qn = an2 + bn+ c, we get

a+ b+ c = 1, 4a+ 2b+ c = 4, and 9a+ 3b+ c = 10.

Solve this system to find a, b, and c. It turns out that a = 3/2, b = −3/2, and
c = 1.

So far we have proved roughly speaking nothing. All we know is that with these
values of a, b, and c, qn = an2 + bn+ c for n = 1, 2, and 3. Since a, b, and c were
chosen to make this happen, the result isn’t impressive!

Let rn = (3n2 − 3n+ 2)/2. We know that qn = rn when n = 1. We now show
that qn = rn for every n.

Calculate rn+1 − rn. It turns out to be 3n. So the sequence (rn) agrees with
(qn) when n = 1, and satisfies the same recurrence relation. The two sequences are
therefore the same everywhere. The idea that we used has many applications. It is
called the Method of Undetermined Coefficients.

Another way: Here is a more streamlined version of the preceding solution. Let
qn = an2 + bn+ c. Then

qn+1 − qn =
(

a(n+ 1)2 + b(n+ 1) + c
)

−
(

an2 + bn+ c
)

= 2an+ (a+ b).

The choice a = 3/2, b = −3/2 ensures that the recurrence qn+1 = qn + 3n holds.
The constant c is still at our disposal: the choice c = 1 makes q1 = 1.

VI-32. Let P be the infinite product 21/2 · 41/4 · 81/8 · · · . Find a simple
expression for P .

Solution. Note that 41/4 = 22/4, 81/8 = 23/8, and so on. Thus if infinite products
behave like finite products, then

P = 2S where S =
1

2
+

2

4
+

3

8
+

4

16
+ · · · .

We calculate S by imitating the usual argument for the sum of a geometric
series. Note that

S = 2S − S = 1 +
2

2
+

3

4
+

4

8
+

5

16
+ · · ·

−
1

2
−

2

4
−

3

8
−

4

16
− · · · .

Thus S = 1 + 1/2 + 1/4 + 1/8 + · · · = 2, and therefore P = 22 = 4.
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VI-33. (a) Observe that 1
1−u + 1

1+u = 2
1−u2 . If x (= ±1, find a simple

expression for Sn(x), where

Sn(x) =
1

1 + x
+

2

1 + x2
+

4

1 + x4
+ · · · +

2n

1 + x2n
.

(b) Find S9(2) correct to 200 decimal places.

Solution. (a) Calculate 1/(1− x) + Sn(x). Start adding: 1/(1− x) + 1/(1 + x) =
2/(1− x2). Now add 2/(1 + x2) and simplify: we get 4/(1− x4). Add 4/(1− x4):
we get 8/(1− x8). Keep on adding. After a while we find that

1

1− x
+ Sn(x) =

2n+1

1− x2n+1 so Sn(x) =
2n+1

1− x2n+1 −
1

1− x
.

Note that 1/(1 − x) acted like a catalyst: it helped combine things, and then got
taken away.

(b) Set x = 2 in the result of part (a):

S9(2) = 1−
1024

21024 − 1
.

Since 21024−1 > 21023, S9(2) differs from 1 by less than 2−1013. To estimate 2−1013,
we can use logarithms to the base 10. More simply, note that since 210 > 103,

21013 > 21010 > 10303,

so S9(2) = 1.000 . . . to more than 303 decimal places!

VI-34. Jo got a job with a starting wage of $1 a day. Each day, Jo’s wage
went up by a dollar, so Jo made $2 on day 2, $3 on day 3, and so on. Jo
worked every day of a 365 day year. How much did Jo earn that year? Hint:
Jo’s friend Mo started at $365 a day, and every day Mo’s wage went down

by a dollar. How much did Jo and Mo earn together on the first day? On
the second?

Solution. Since Jo’s wage goes up by a dollar a day, while Mo’s goes down by the
same amount, their combined daily income stays constant at 366. So in a year they
earn a total of 365 · 366. By symmetry, Jo earns precisely as much during the year
as Mo does, so Jo earns (365 · 366)/2.

Comment. The wording is meant to make more concrete the idea behind the usual
proof that 1+2+3+· · ·+n = n(n+1)/2. Most people have a tactile grasp of money
by an early age, so the story is more persuasive than the “symbol manipulation”
reversal of the sum.
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VI-35. In the eighteenth century, Euler showed that

1

12
+

1

22
+

1

32
+ · · ·+

1

n2
+ · · · =

π2

6
.

Use Euler’s result to calculate A, where

A =
1

12
+

1

52
+

1

72
+

1

112
+

1

132
+ · · ·

(the denominators are the perfect squares divisible by neither 2 nor 3).

Solution. It is easier to add up the terms in Euler’s sum that are missing from the
above sum. We calculate B, where

B =
1

22
+

1

32
+

1

42
+

1

62
+

1

82
+ · · ·

(the denominators are the perfect squares divisible by 2 or 3 or both).
First add up the terms whose denominator is the square of an even number:

1

22
+

1

42
+

1

62
+ · · · =

(

1

4

)(

1

12
+

1

22
+

1

32
+ · · ·

)

=
π2

24
.

Next add up the terms whose denominator is the square of a multiple of 3. A
calculation like the one above shows that this sum is π2/54.

The terms whose denominator is the square of a multiple of 6 occurred in both
sums, so they were “counted twice.” These terms add up to π2/216. It follows that

B =
π2

24
+

π2

54
−

π2

216
=

π2

18

and therefore A = π2/6− π2/18 = π2/9.

Another way: We can let the algebra do more of the thinking. Let E be Euler’s
sum. Then

E = A

(

1 +
1

22
+

1

24
+ · · ·

)(

1 +
1

32
+

1

34
+ · · ·

)

.

(Imagine multiplying out the three series: every perfect square appears once and
only once as a denominator.) The two geometric series on the right have sum
1/(1− 1/22) and 1/(1− 1/32), and therefore

A = E

(

1−
1

22

)(

1−
1

32

)

.

The same idea can be used to compute for example the sum of the terms whose
denominators are, for example, divisible by none of 2, 5, or 7, or indeed by none of
a specified finite collection of primes.
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VI-36. Let f(x) = 1 + 3x + 5x2 + 7x3 + · · · + 9999x4999. Find a simple
closed form expression for f(x), valid when x (= 1.

Solution. We might as well sum to (2n+1)xn—for one thing, n takes less effort to
type than 4999. Bump exponents up by 1 as follows:

f(x) = 1 + 3x+ 5x2 + 7x3 + · · ·+ (2n+ 1)xn

xf(x) = x+ 3x3 + 5x3 + · · ·+ (2n− 1)xn + (2n+ 1)xn+1.

Subtract. We get (1− x)f(x) = 1 + 2x(1 + x+ x2 + · · ·+ xn−1)− (2n+ 1)xn+1.
For x (= 1, the series 1+x+x2+ · · ·+xn−1 has sum (1−xn)/(1−x). Substitute

and simplify. After a while we get

f(x) =
1 + x− (2n+ 3)xn+1 + (2n+ 1)xn+2

(1− x)2
.

Comments. 1. Using similar ideas, we can tackle sums such as

12 + 22x+ 32x2 + · · ·+ n2xn−1.

Let g(x) be the above sum. Then (1 − x)g(x) is a close relative of f(x).

2. Things become prettier if instead of summing to n, we sum “to infinity” (this
only makes sense if |x| < 1). There is a natural calculus-based approach which we
illustrate with the sum 1 + 2x+ 3x2 + · · · .

Let h(x) = 1 + x + x2 + · · · . Then, maybe, h′(x) = 1 + 2x + 3x2 + · · · .
The “maybe” is there because we are assuming that the differentiation of “infinite
sums” behaves like differentiation of finite sums. It doesn’t always, but does in
many important cases including this one.

We know that h(x) = 1/(1 − x) if |x| < 1. Thus h′(x) = 1/(1 − x)2, and
therefore 1 + 2x+ 3x2 + · · · = 1/(1− x)2.

VI-37. It so happens that there are constants a, b, c, and d such that

12 + 22 + 32 + · · ·+ n2 = an3 + bn2 + cn+ d.

for all n. Starting from first principles, find the constants and prove that
the formula holds.

Solution. If the formula holds for all n, it holds in particular when n = 1. That
gives the equation 1 = a+ b + c+ d. From the fact that the equation holds when
n = 2, we get 5 = 8a+ 4b+ 2c+ d. Similarly, from the fact that the formula holds
at n = 3 and 4, we get two more linear equations. Finally, solve the four linear
equations in four unknowns. This is not very pleasant, and after all that work we
still have to check that the formula so obtained really does work for every n, not
just at 1, 2, 3, and 4.
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Another way: Let sn = 12 + 22 + · · ·+ n2 and qn = an3 + bn2 + cn+ d. We want
to choose the constants so that qn = sn for all n. Note that sn = sn−1 + n2 and
s1 = 1. So we need to have qn − qn−1 = n2. But

qn − qn−1 = 3an2 − 3an+ 2bn+ a− b+ c,

so we want the right-hand side to be identically equal to n2. That forces a = 1/3,
b = 1/2, and c = 1/6.

With this choice of a, b, and c, the sequences (sn) and (qn) satisfy the same
recurrence relation. To make the sequences identical, we need to choose d so that
q1 = 1. But q1 = a+ b+ c+ d = 1 + d, so q1 = 1 if d = 0.

Comment. The same strategy will produce a formula for the sum of the first n
cubes—we look for an expression of shape an4 + bn3 + cn2 + dn + e—the first n
fourth powers, and so on. Things do get messier, but not very fast.

VI-38. Let F0 = 0, F1 = 1, and Fn+2 = Fn+1+Fn for all n ≥ 0. Show that

Fn =

(

1√
5

)

[(

1 +
√
5

2

)n

−

(

1−
√
5

2

)n]

for all n.

Hint: Show that
(

1+
√
5

2

)n
and

(

1−
√
5

2

)n
satisfy the recurrence.

Solution. Let Gn be the messy expression to the right of the equals sign. We want
to show that Fn = Gn for all n. It is easy to see that G0 = 0 and G1 = 1, so the
sequence of G’s begins in the same way as the sequence of F ’s. If we can show that
Gn+2 = Gn+1 + Gn for all n, it will follow that the two sequences are the same
everywhere.

To make things less messy, let Un =
(

1+
√
5

2

)n
, and let Vn =

(

1−
√
5

2

)n
. If we

can prove that Un+2 = Un+1 + Un, and the analogous formula for the V ’s, the
desired recurrence formula for the G’s will follow.

Use the abbreviation τ for (1 +
√
5)/2. Note that τ is a root of the equation

x2 − x− 1 = 0, and therefore τ + 1 = τ2. We have

Un+1 + Un = τn+1 + τn = τn(τ + 1) = τnτ2 = τn+2 = Un+2.

The calculation for the V ’s is almost identical.

Comments. 1. The sequence (Fn) is the famous Fibonacci sequence. The above
“closed form” formula for Fn was mentioned by de Moivre in 1718 but is usually
called Binet’s Formula. The closed form formula, though interesting, is less useful
than the recurrence.

The number τ , often called the golden ratio, turns up in many areas of mathe-
matics. For example, the length of a diagonal of a regular pentagon is τ times the
side. As a consequence, cos 36◦ = τ/2.
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There is much non-mathematical interest in τ—see the Internet for some strange
speculations. It is often written that the ancient Greeks thought that the rectangle
with long side τ times the short has the most beautiful shape, and that they used
the golden ratio in their architecture and sculpture. But there is no evidence that
any ancient Greek ever expressed an opinion on the relative beauty of rectangles.

2. Let (Wn) be a sequence that satisfies the recurrence Wn+2 = pWn+1 + qWn. If
the roots of x2−px−q = 0 are distinct and real, say λ and µ, then Wn = aλn+bµn

for some numbers a and b that can be calculated once we know W0 and W1.

VI-39. How many triangles with integer sides have one side equal to 12 and
no side greater than 12? What about if we replace 12 by 13? Generalize.

Solution. Let the other two sides be a and b. The only constraint on a and b is
that they be positive integers no greater than 12 such that a+ b > 12. (The sum
of two sides of a triangle is greater than the third side.)

Without loss of generality we may take a ≤ b. Start counting. If a = 1, there
is one possibility for b, namely 12. If a = 2, then b can be 11 or 12 . If a = 3, then
b can be 10 or 11 or 12. Go on until a = 6, when b can be any of 7, 8, . . . , 11, or
12. If a = 7, the possible b are again 7 to 12, if a = 8 they are 8 to 12, and so on,
until at a = 12 we can only have b = 12. So there are 2(1+ 2+ · · ·+5+6), namely
42, triangles.

For 13 the calculation is essentially the same. The only difference is that we
get the pattern 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1. The sum is 49.

The general case is done in exactly the same way. When n is even we get the
pattern 1, 2, 3, . . . , k−1, k, k, k−1, . . . , 1, where k = n/2. The sum is (n2+2n)/4.
If n is odd, let n = 2k+1. We get the pattern 1, 2, . . . , k, k+1, k, . . . , 1, and the
sum is (n2 + 2n+ 1)/4. Formulas as nice as these urge us to look for

Another way: Look at Figure 6.2, which illustrates the cases n = 8 and n = 9, but
the square on the left works for any even n, and the one on the right for any odd
n.

OO PP

Q
Q

Figure 6.2: Counting Triangles with Integer Sides

Let O be the origin and let OP be along the x-axis, with OP = n (in the picture,
OP = 8). The triangle T surrounded by the solid line contains all pairs (x, y) of
integers (dots) such that x ≤ y ≤ n and x + y > n. The triangles surrounded



CHAPTER 6. SEQUENCES 211

by the dashed lines all have the same number of dots as T . Together, the four
triangles contain all the points of the (n + 1) × (n + 1) dot array except for the
central dot, so T contains ((n+ 1)2 − 1)/4, that is, (n2 + 2n)/4 dots. The picture
on the right yields almost identical information, except that there is no central dot,
so T contains (n+ 1)2/4 dots.

Comment. We sketch a recurrence relation approach. Let Tn be the set of triangles
with integers sides, with one side n and no side greater than n. Let tn be the
number of triangles in Tn.

Take a triangle in Tn with sides a, b, and n. By adding 1 to each of a and b,
and 2 to n, we get a triangle in Tn+2. The only triangles we can’t get this way are
the ones that have two or more sides equal to n+ 2; there are n+ 2 of these.

We conclude that the sequence (tn) satisfies the recurrence tn+2 = tn + n+ 2.
It is clear that t1 = 1 and t2 = 2. We find a formula for tn when n is even. (The
odd case is handled similarly.)

Let n = 2k. We have t4 = t2 + 2+ 2, t6 = t4 + 4+ 2, t8 = t6 + 6+ 2 and so on
up to t2k = t2k−2 + 2k − 2 + 2. Add up the left-hand sides, add up the right-hand
sides, then note that almost all the ti cancel. We get

t2k = t2 + (2 + 4 + 6 + · · ·+ (2k − 2)) + 2(k − 1).

But t2 = 2 and 2 + 4 + 6 + · · · + (2k − 2) = (k − 1)k, so t2k = k2 + k. Thus
tn = (n2 + 2n)/2.

VI-40. An arithmetic progression has four terms. The product of the end
terms is 20, and the product of the middle terms is 70. Find the sum of the
terms. And how many such arithmetic progressions are there?

Solution. We should take as much advantage of symmetry as possible. So let the
terms be b − 3k, b − k, b + k, and b + 3k. Then b2 − 9k2 = 20 and b2 − k2 = 70.
Thus k2 = 25/4 and b2 = 305/4.

The sum of the terms, namely 4b, is therefore ±2
√
305. Since b and k can, inde-

pendently, each take on two values, there are four different arithmetic progressions
with the desired properties. They are not very different: if a1, a2, a3, a4 is one of
them, we get the others by writing the sequence backwards and/or multiplying by
−1.

VI-41. In a four-term geometric progression, the end terms add up to 61
and the middle terms add up to 36. Find the terms.

Solution. Let the terms be a, ar, ar2, and ar3. Then

a+ ar3 = 61 and ar + ar2 = 36.

Thus 36a(1+r3) = 61a(r+r2). But 1+r3 = (1+r)(1−r+r2). Since neither a nor
1 + r can be 0, we cancel a(1 + r) from both sides and obtain 36r2 − 97r+ 36 = 0.
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The solutions are r = 9/4 and r = 4/9. If r = 9/4, then a = 64/13, so the
terms are 64/13, 144/13, 324/13, and 729/13. If r = 4/9 we get the same terms in
reverse order.

Comment. This problem, with the sum of the middle terms equal to 12 and the
sum of the end terms equal to 20, occurs in Isaac Newton’s Lectures on Algebra.

VI-42. Find a simple expression for

23 − 1

23 + 1
·
33 − 1

33 + 1
·
43 − 1

43 + 1
· · ·

1003 − 1

1003 + 1
·
1013 − 1

1013 + 1
.

Solution. Use the factorization

k3 − 1

k3 + 1
=

k − 1

k + 1
·
k2 + k + 1

k2 − k + 1
.

First multiply together the terms of the form (k − 1)/(k + 1) as k goes from 2 to
101. We get

1

3
·
2

4
·
3

5
·
4

6
· · ·

98

100
·
99

101
·
100

102
.

There is a lot of cancellation: the product is 2/(101 · 102). Now evaluate

22 + 2+ 1

22 − 2 + 1
·
32 + 3 + 1

32 − 3 + 1
·
42 + 4 + 1

42 − 4 + 1
· · ·

1002 + 100 + 1

1002 − 100 + 1
·
1012 + 101 + 1

1012 − 101 + 1
.

Note that in general k2 + k+1 = (k+1)2 − (k+1)+ 1. So any numerator is equal
to the “next” denominator, there is a lot of cancellation, and we get (1012 + 101+
1)/(22 − 2 + 1).

The full product turns out to be 10303/15453.

Comment. If we multiply instead up to the term (n3 − 1)/(n3 + 1), the same
argument shows that the product is (2/3)(n2 + n + 1)/(n2 + n). As n → ∞, the
ratio (n2 + n + 1)/(n2 + n) approaches 1, and therefore the “infinite” product is
2/3.

VI-43. Let a1 = 1, a2 = −1, a3 = 1. For k ≥ 1 let ak+3 = akak+2.
Calculate aN where N = 10000.

Solution. We can calculate easily as far as we want, but going all the way to 10000
is not an attractive prospect. Compute for a while. The first few terms are 1, −1,
1, 1, −1, −1, −1, 1, −1, 1, 1, −1, and so on.

Note that the term a8, a9, and a10 are respectively equal to a1, a2, and a3.
Thus the initial segment a1, a2, . . . , a7 repeats endlessly. If k is a multiple of 7,
then ak is at the end of a cycle. Since 10000 = 7 · 1428 + 4, we conclude that
aN = a4 = 1.
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Comment. The cycling was pleasant, but it shouldn’t come as a surprise. Imagine
looking at a1, a2, a3, then at a2, a3, a4, then at a3, a4, a5, and so on. Each is a string
of length 3 made up of the letters 1 and/or −1. There are only 8 such strings, so
by the time we have looked at a9, a10, a11 we must have seen some string twice.

In fact, the string 1, 1, 1 can’t occur: if it ever does, then by calculating back-
wards we find that all the ai must be 1. So by the time we have looked at a8, a9, a10
we must have seen some string twice. Thus it turns out that we were unlucky: the
cycle length is the longest it could conceivably be. And it isn’t just by chance
that a1, a2, a3 is the first string that we see again. (Hint: Extend the calculation
backwards, to a0, a−1, and so on, then go forward again.)

We can thus freely invent similar problems with confidence that there will be
cycling. The same problem can also be given in disguise. Let b1 = 0, b2 = 1, and
b3 = 0. For any k > 3, let bk be the remainder when bk−3 + bk−1 is divided by 2.

VI-44. Find 50 consecutive odd numbers whose sum is 10000.

Solution. Let the first number in the sequence be 2a + 1. Then the numbers are
2a + 1, 2a + 3, . . . , 2a + 99. We have an arithmetic progression with 50 terms.
By the usual method for summing an arithmetic progression, the sum of the 50
numbers is 100a+2500. But this sum is 10000 and therefore a = 75. The numbers
are 151, 153, . . . , 249.

Another way: The sum of the first and the fiftieth is the same as the sum of the
second and the forty-ninth, and so on. There are 25 such pairs, so each sum is 400.
Thus the sum of the two middle terms is also 400, and therefore these terms are
199 and 201. Now we can write down the whole sequence.

Another way: Let’s try to guess the answer. Guess for example that the numbers
are −49, −47, . . . , −1, 1, . . . , 47, 49. Not a very good guess—the sum is 0! To get
a sum of 10000, add 10000/50 to each number.

VI-45. A path is 2 feet wide and 18 feet long. We want to pave the path
with 1× 2 concrete paving blocks. How many ways are there to accomplish
the task? Hint: Start at one end and put down a paving block.

Solution. Let F (n) be the number of ways of paving a 2 × n path. To get some
insight, we should start by calculating F (1), F (2), and so on for a while. We find
that F (1) = 1, F (2) = 2, and F (3) = 3. Is it that simple? No, F (4) = 5, and with
a little effort F (5) = 8. Interesting!

Suppose that the path goes from East to West, as in Figure 6.3. The first block
can be put at the eastern end of the path with its long side (i) going North–South
or (ii) East–West. If we do (i), there is a 2× (n− 1) path left to pave, and that can
be done in F (n − 1) ways. If we do (ii), then we are forced to put another block
with its long side going East–West and are left with a 2× (n− 2) path, which can
be paved in F (n− 2) ways. We have obtained the recurrence formula

F (n) = F (n− 1) + F (n− 2).
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Figure 6.3: Paving a Path

Note that F (0) = F (1) = 1. (The F (0) is not quite a joke. There is exactly one
way to pave a path of length 0, namely do nothing!) If we feel uncomfortable with
F (0), we can instead observe that F (2) = 2.

By the recurrence formula, F (3) = 3, F (4) = 5, and so on. The next numbers
are 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181. So F (18) =
4181.

Comment. Once again we have bumped into the Fibonacci sequence, which shows
up surprisingly often in various areas of mathematics, among others geometry, num-
ber theory, the theory of algorithms, and mathematical biology. It all started with
a harmless little puzzle about rabbits in Leonardo of Pisa’s Liber Abbaci (1202).

We can do the same sort of computation if we want to pave a 3 × n path
with 1 × 3 blocks. The recurrence relation is F (n) = F (n − 1) + F (n − 3), with
F (0) = F (1) = F (2) = 1.

VI-46. Find integers m and n with m < n such that

1

(m)(m+ 1)
+

1

(m+ 1)(m+ 2)
+ · · ·+

1

(n− 1)(n)
=

1

47
.

Hint: 1
k(k+1) =

1
k − 1

k+1 .

Solution. For concreteness, look for example at

1

20 · 21
+

1

21 · 22
+ · · ·+

1

36 · 37
+

1

37 · 38
.

By the formula of the hint, the above sum is equal to
(

1

20
−

1

21

)

+

(

1

21
−

1

22

)

+ · · ·+
(

1

36
−

1

37

)

+

(

1

37
−

1

38

)

.

Note the wholesale cancellation: the sum is 1/20 − 1/38. In the general case the
sum is 1/m − 1/n. This kind of series is called a telescoping series. They like to
come to mathematics contests, but there are also many genuine applications. This
chapter is full of telescoping series.

So we are looking for integers m and n such that

1

m
−

1

n
=

1

47
.

In the relation 1/k(k + 1) = 1/k − 1/(k + 1), set k + 1 = 47. We obtain 1/47 =
1/46− 1/(46 · 47). So we can take m = 46 and n = 2162.
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Comment. To find all solutions, rewrite the equation as mn+47m− 47n = 0 (but
remember that the variables can’t be 0). In a move reminiscent of completing the
square, we get equivalently

(m− 47)(n+ 47) = −472.

So m − 47 and n + 47 must be factors of −472 with m < n. Also, we can’t have
m negative and n positive, for then our sum would involve division by 0. Setting
m−47 = −1 and n+47 = 472 gives the solution already found, and m−47 = −472,
n + 47 = 1 gives m = −2161, n = −46. If instead of 47 we use a number with
several divisors, such as 48, the number of solutions jumps.

VI-47. For any real number x, let )x* be the largest integer less than or
equal to x. Find

)2* + )log2 3*+ )log2 4*+ · · · + )log2 1022* + )log2 1023*.

Solution. Note that )log2 2* = )log2 3* = 1, and )log2 4* = )log2 5* = )log2 6* =
)log2 7* = 2, and so on, with finally )log2 512* = · · · = )log2 1023* = 9. So we want
to compute the sum

1 · 2 + 2 · 4 + 3 · 8 + · · ·+ 9 · 512.

We could just use the calculator, but maybe it is easier to use a general tech-
nique. Let S be the above sum. Then 2S = 1 · 4 + 2 · 8 + · · · + 9 · 1024. Thus
2S − S = 9 · 1024− (2 + 4 + · · · + 512). Finally, 2 + 4 + · · · + 512 = 1024− 2, so
S = 8194.

VI-48. (a) Suppose that x (= 1. Find a simple expression for Pn(x), where

Pn(x) = (1 + x)(1 + x2)(1 + x4) · · · (1 + x2
n

).

(b) Suppose that |x| < 1. What happens to Pn(x) as n grows without
bound?

Solution. (a) Calculate. We get P0(x) = 1 + x, P1(x) = (1 + x)(1 + x2) = 1 + x +
x2+x3, and P3(x) = 1+x+x2+ · · ·+x7. A clear pattern is emerging. We want to
convince ourselves, and others, that the pattern really is there. Calculate the next
product. To multiply the product of the first three terms by 1+ x8, multiply by 1,
also by x8, and add. We get

1 + x+ x2 + · · ·+ x7 + x8(1 + x+ x2 + · · ·+ x7).

The first half gives the powers of x up to x7, the second half gives the powers from
x8 to x15, so the sum gives the powers up to x15. The general situation is now
clear:

Pn(x) = 1 + x+ x2 + x3 + · · ·+ x2n+1−1.
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This is a geometric series. If x (= 1, the sum is

1− x2n+1

1− x
.

Another way: Calculate (1 − x)Pn(x). We have (1 − x)(1 + x) = 1 − x2. But
(1 − x2)(1 + x2) = 1− x4, and (1 − x4)(1 + x4) = 1− x8, and so on. Thus

(1 − x)Pn(x) = 1− x2n+1

.

(b) If |x| < 1, then as n grows without bound, x2n+1

approaches 0, and therefore
Pn(x) approaches 1/(1 − x). So if |x| < 1 then the infinite product (1 + x)(1 +
x2)(1 + x4) · · · is equal to 1/(1− x).

Comments. 1. The problem is harder if a particular x is used, such as 3/π. If we
compute the first few terms of the sequence to 9 decimal places, we may lose sight
of the structure. A calculator is undeniably useful, but it can be confusing to use
it too soon.

2. The result can be connected with binary expansions. Every non-negative integer
can be expressed uniquely as a sum of distinct powers of 2. It follows that for
every such integer k, a term xk appears exactly once when we expand the infinite
product.

Using the base 3 expansion, we find in a similar way that

(1 + x+ x2)(1 + x3 + x6)(1 + x9 + x18) · · · =
1

1− x

if |x| < 1. The idea can be substantially generalized. Problems of this type are
connected to important ideas—generating functions, the zeta-function, and so on.

VI-49. Let a0 = 0 and a1 = 1. For n ≥ 0, let an+2 = (an + an+1)/2. Show
that an approaches 2/3 as n becomes large. Hint: Let dn = an+1 − an.

Solution. Assume—this is not obvious—that the an do approach some number x.
When n is large an+2, an+1, and an will be close to x, so x = (x + x)/2. Solve for
x. Oops! We get 0 = 0, true but not helpful. So let’s take a look at the sequence,
which is how we should have started anyway.

The first few terms are 0, 1, 1/2, 3/4, 5/8, 11/16, 21/32, 43/64, 85/128. Notice
that each numerator is almost twice the previous one: 3 = 2 · 1 + 1, 5 = 2 · 3 − 1,
11 = 2 · 5 + 1, 21 = 2 · 11 − 1, and so on. Or maybe notice that if we multiply
numerators by 3, the result is almost a power of 2. Or since the ai (maybe) approach
2/3, look in detail at the numbers ai − 2/3. Patterns jump out, particularly if we
don’t use a calculator.

As the hint suggested, let dn = an+1−an (here d stands for difference). Calcu-
late. We get d0 = 1, d1 = −1/2, d2 = 1/4, d3 = −1/8, d4 = 1/16. The conclusion
that dn = (−1)n/2n is irresistible and not hard to prove. Note that

dn+1 = an+2 − an+1 =
an − an+1

2
= −

dn
2
.
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Since d0 = 1, it follows that dn = (−1/2)n.
Now that we know dn, the rest is easy. We have

(a1 − a0) + (a2 − a1) + · · ·+ (an − an−1) = an − a0 = an,

and therefore an = 1 + r + r2 + · · ·+ rn−1 = (1− rn)/(1− r), where r = −1/2. It
follows that as n gets large an approaches 2/3.

Comments. 1. Suppose that (an) satisfy the recurrence and a0 = p, a1 = q, where
p (= q. Define a new sequence (bn) by bn = (an − p)/(q− p). It is not hard to check
that (bn) satisfies the recurrence and b0 = 0, b1 = 1, so we know everything about
(bn), and therefore everything about (an).

The recurrence an+2 = (1 − t)an+1 + tan, where t is any real number, can be
analyzed in the same way, for it can be rewritten as

an+2 − an+1 = −t(an+1 − an).

If |t| < 1, then as n gets large, an approaches a number which we can compute if
we know a0 and a1.

2. We flip a fair coin repeatedly, and get 2 dollars for every head and 1 dollar for
every tail. Let pn be the probability that we “hit” n dollars exactly at some time
or other. How we get to exactly n+2 dollars? If we hit n+1 exactly and then toss
a tail, or if we hit n exactly and then toss a head. So pn+2 = (1/2)pn+1 + (1/2)pn,
the recurrence of this problem.

VI-50. The sequence (en) obeys the recurrence en+2 = en+1−en+1. What
are all the possible numbers of different terms that the sequence can have?

Solution. Let e1 = a and e2 = b. The first few terms are a, b, b−a+1, 2−a, 2− b,
a− b+ 1, a, b, . . . . Thus e7 = e1 and e8 = e2, there is cycling, and therefore there
can’t be more than 6 different terms.

There can be 6 terms. Indeed for “most” choices of a and b there are 6. Take for
example a = 0 and b = 10. There can be 1 term. For that, we need a = b = b−a+1,
that is, a = b = 1.

There can’t be 2 terms. If consecutive terms are never equal and there are no
more than 2 terms, then a = b − a + 1 = −b + 2, forcing a = b = 1. If some two
consecutive terms are equal, then because of the cycling we may assume they are
the first two terms. Then e3 = 1. If a (= 1, then since e4 = 2 − a we conclude that
a, e3, and e4 are all different.

There can be 3 terms, for example if a = 0 and b = 0. There can be 4, for
example if a = 3 and b = 3. But there can’t be 5. For if two terms among the first
6 are equal, then because of the cycling we can assume that ei = a for some i with
2 ≤ i ≤ 6. If e4 = a, then a = 1 and therefore e3 = b, so there are no more than
4 terms. If e2 = a, then e4 = e5, and if e3 = a then e4 = e6, and so on, so again
there are no more than 4 terms.
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VI-51. Show that

1 · 2 + 2 · 3 + · · · + n(n+ 1) =
n(n+ 1)(n + 2)

3
.

Solution. Since the poser of the question kindly supplied a formula for the sum, we
need only check that the formula is correct. Let sk = k(k+ 1)(k+ 2)/3. Note that

sk − sk−1 =
k(k + 1)(k + 2)

3
−

(k − 1)(k)(k + 1)

3
= k(k + 1),

so our sum is equal to

(s1 − s0) + (s2 − s1) + (s3 − s2) + · · ·+ (sn − sn−1).

Almost everything cancels and s0 = 0, so the sum is sn.

Another way: Here is a nice combinatorial argument. The number of ways of
choosing 3 numbers from the collection {1, 2, 3, . . . , n+ 2} is

(

n+ 2

3

)

, that is,
n(n+ 1)(n+ 2)

6
.

We now calculate the number of choices another way.
Imagine having chosen the 3 numbers, and let x be the largest of the 3 chosen

numbers. Maybe x = 3. Then there are
(

2
2

)

possibilities for the other two. Maybe

x = 4. Then there are
(3
2

)

possibilities for the other two. If x = 5, there are
(4
2

)

possibilities for the other two. Go on in this way. Finally, if x = n + 2 there are
(

n+1
2

)

possibilities for the other two. We conclude that

n(n+ 1)(n+ 2)

6
=

(

2

2

)

+

(

3

2

)

+

(

4

2

)

+ · · ·+
(

n+ 1

2

)

.

Finally, note that
(k
2

)

= k(k − 1)/2, and multiply by 2 to get the desired result.

Comments. 1. This result is mentioned by Āryabhata (sixth century).

2. The sum of the problem can be rewritten as

(12 + 1) + (22 + 2) + · · ·+ (n2 + n).

We conclude that

(12 + 22 + · · ·+ n2) +
n(n+ 1)

2
=

n(n+ 1)(n+ 2)

3
.

Now a little manipulation gives a formula for 12 + 22 + · · ·+ n2.

3. The idea generalizes. For example, we can show in the same way that

1 · 2 · 3 + 2 · 3 · 4 + · · ·+ n(n+ 1)(n+ 2) =
n(n+ 1)(n+ 2)(n+ 3)

4
.



Chapter 7

Number Theory

Introduction

This chapter has questions about the remainder when an integer, usually
quite large, is divided by another integer. There are a few questions about
the shape of the decimal expansion of certain numbers. The chapter also
contains a number of variants of the popular question about the number of
consecutive 0’s at the right of the decimal representation of n!. Many of
the remaining problems involve Diophantine Equations, that is, equations
in which we look for integer solutions. The restriction to integers radi-
cally alters the nature of the arguments, although familiar tools can still
be helpful—see VII-50 for a number-theoretic instance of completing the
square.

Number-theoretic problems are not part of the senior secondary curricu-
lum. Indeed, apart from calculation of greatest common divisors, least com-
mon multiples, and prime factorization, number theory—that is, the study
of the properties of the integers—is not studied in the schools. Number-
theoretic questions occur more frequently in mathematics contests. And
number theory remains a central branch of mathematics, ever lively, ever
new—witness the recent proof by Andrew Wiles of Fermat’s Last Theorem,
a result that was sought for more than three centuries.

Some of the problems in this chapter will seem difficult, mainly because
of lack of familiarity. It can be hard to know how to start. But one should
remember that the integers are concrete, certainly far more concrete than
electrons. We can often discover what is going on by experimenting. The
integer solutions of an equation can often be found by a systematic search;
such a search can at least yield important clues.

219
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We have tried to introduce many of the fundamental concepts of number
theory through problems. For example, there are three proofs of the fact
that there are infinitely many primes—see VII-8, VII-13, and VII-56.

Problems and Solutions

VII-1. Find all pairs (x, y) of non-negative integers such that x+ y = 768
and the greatest common divisor of x and y is 64.

Solution. If the greatest common divisor of x and y is 64, then in particular x = 64u
and y = 64v for some integers u and v. Then x+ y = 768 if and only if u+ v = 12.

We need to make sure that the greatest common divisor of u and v is 1. That
leaves the possibilities u = 1, v = 11; u = 5, v = 7; u = 7, v = 5; and u = 11,
v = 1.

VII-2. Let P (x) = ax2 + bx+ c. Suppose that P (n) is an integer for every
integer n. Show that a, b, and c needn’t all be integers. What can be said
about a, b, and c?

Solution. Put n = 0. Then P (n) = c, so c is an integer. But a and b needn’t be
integers. For example, for any integer n one of n or n+1 is even, so n2+n is always
even. It follows that (1/2)(n2 + n) is an integer for any n. So if we take a = 1/2,
b = 1/2, and c = 0, then P (n) is always an integer. (To save words, the letter n
always represents an integer.)

In general, note that since c is an integer, an2 + bn is an integer. Put n = 1.
We conclude that a+ b is an integer. Put n = −1. Thus a− b is an integer. Add:
2a is an integer.

If a is an integer, then since a+b is an integer, so is b. The only other possibility
is that a is half of an odd integer. Then since a + b is an integer, b is also half of
an odd integer. Finally, we need to show that if c is an integer and a = s/2 and
b = t/2 with s and t odd, then an2 + bn+ c is always an integer.

We need to show that (1/2)(sn2 + tn) is an integer. This is obvious if n is
even. If n is odd, then sn2 and tn are odd and therefore their sum is even, so
(1/2)(sn2 + tn) is an integer.

Comment. Using the same ideas, we can solve the following problem. Let P (x) =
ax2 + bx+ c, where this time a, b and c are integers. Suppose that P (n) is divisible
by 15 for every integer n. Show that a, b, and c are divisible by 15.

If instead of 15 we use an even number, for example 42, we can conclude that
42 divides c. But 42 needn’t divide a and b: they could each be an odd multiple of
21.

VII-3. Let a, b, and c be positive integers. Show that if a3 + b3 + c3 is
divisible by 7 then at least one of a, b, or c is divisible by 7. Hint: Find the
remainders when (7k + 1)3, (7k + 2)3, . . . , (7k + 6)3 are divided by 7.
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Solution. Any positive integer n can be expressed as 7q + r, where the remainder
r is 0, 1, 2, 3, 4, 5, or 6. Imagine expanding (7q + r)3. We get something divisible
by 7 (the details don’t matter) plus r3. So the remainder when n3 is divided by 7
is the same as the remainder when r3 is divided by 7. For r = 1, 2, . . . , 6 these
remainders are quickly computed. They are 1, 1, 6, 1, 6, and 6, so if n is not
divisible by 7 the only possibilities are 1 and 6.

If none of a, b, or c is divisible by 7, the possible remainders when a3 + b3 + c3

is divided by 7 are obtained by taking three numbers each of which is 1 or 6, and
finding the remainder when their sum is divided by 7. There are only four cases to
look at. The possible remainders are 1, 3, 4, and 6. In particular, a remainder of 0
can’t happen.

Comment. A number which is not divisible by 7 is of the form 7k ± 1 or 7k± 2 or
7k ± 3. The cubes of these are respectively of the form 7k ± 1, 7k ± 1, and 7k ∓ 1.
So the issue is whether we can find three numbers, each of which is 1 or −1 and
whose sum is divisible by 7. Clearly we can’t.

This way of looking at things has greater symmetry, and symmetry is always
useful. For example, we can see at once that if we have five numbers, none of which
is a multiple of 7, then the sum of their cubes can’t be a multiple of 7.

VII-4. Show that 13 divides a13 − a for any integer n. Hint: Look at
(13q + r)13 − (13q + r).

Solution. Any integer a can be written in the form a = 13q+ r, where 0 ≤ r ≤ 12.
(Just divide a by 13; q is the quotient and r is the remainder.) Imagine expanding

(13q + r)13 − (13q + r)

by using the Binomial Theorem, or by just multiplying out. The result is r13 − r
plus the sum of a bunch of terms with 13’s in them. It follows that 13 divides
a13 − a if and only if 13 divides r13 − r.

So we only need to show that r13 − r is divisible by 13 for any integer r from
0 to 12. The task has been cut down from considering infinitely many a to looking
at 13 numbers only. That still takes some work, and numbers like 1013 are beyond
the comfort zone of the calculator, so we simplify things a bit first.

Any integer a can be written in the form a = 13k + r where −6 ≤ r ≤ 6.
Thus we need only show that r13 − r is divisible by 13 for −6 ≤ r ≤ 6. But since
(−x)13 − (−x) = −(x13 − x), we only need to show that r13 − r is divisible by 13
for r = 0, 1, . . . , 6. That’s easy to do with a calculator.

Comment. There is nothing very special about 13. It can be shown that if p is
any prime, then p divides ap − a for every integer a. This important fact is usually
called Fermat’s Theorem, after its seventeenth-century discoverer. For proofs of
Fermat’s Theorem, see any basic Number Theory book.

VII-5. Find a multiple of 999 whose decimal representation is made up
entirely of 1’s.
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Solution. We experiment with smaller numbers to get some insight. So let’s first
find a multiple of 9 of the shape 11 . . .1. Recall that a number is divisible by 9 if
and only if the sum of its digits is divisible by 9. So stringing together 9 1’s works.

Now look at 99. A number is divisible by 99 if it is divisible by 11 and the
quotient is divisible by 9. A number made up of an even number 2k of 1’s is
divisible 11—just think about the ordinary “long division” process. The quotient
looks like 1010 . . .101, where the block 10 is repeated k − 1 times, and at the end
there is a 1. So there are k 1’s, and therefore the quotient is divisible by 9 if k is a
multiple of 9. We conclude that stringing together 18 1’s works.

The same idea works with 999. Our number should be divisible by 111, and the
quotient divisible by 9. A number made up of 3k 1’s is divisible 111—again just
think about the ordinary division process. The quotient looks like 100100 . . .1001,
where the block 100 is repeated k − 1 times. So again there are k 1’s, and we
conclude that stringing together 27 1’s works.

Another way: Here is a more algebraic-looking version of the same argument.
A number made up of all 1’s must be (10n − 1)/9 for some positive n. We need an
n such that 999 divides (10n− 1)/9. Equivalently, 9(103− 1) should divide 10n− 1.

We use the identity

xm − 1 = (xm−1 + · · ·+ x+ 1)(x− 1).

Let x = 103. The identity shows that 103 − 1 divides 103m − 1. We need another
factor of 9, so 9 should divide 1 + x+ · · ·+ xm−1.

But 1, x, x2, . . . , xm−1 are powers of 10, so each is 1 more than a multiple of
9. We can force their sum to be divisible by 9 by letting m = 9. It follows that
(1027 − 1)/9 is a multiple of 999 of the right shape.

Comment. Let k be a positive integer which is divisible neither by 2 nor by 5. We
sketch a proof of the surprising fact that there is a multiple of k whose decimal
representation is made up entirely of 1’s. Let m = 9k. It is enough to show that
there is a multiple of m which is made up entirely of 9’s.

For n = 0, 1, 2, and so on, imagine computing the remainder when 10n is
divided by m. There are at most m − 1 possible remainders, so by the time n
reaches m − 1 we must have seen some remainder twice. Suppose that 10s and
10t, where s < t, give the same remainder on division by m. Then 10t − 10s is a
multiple of m. But

10t − 10s = 10s(10t−s − 1),

and since m has no common factor with 10s, it follows that m divides 10t−s − 1.
The decimal expansion of this last number is made up entirely of 9’s.

VII-6. When 800 is divided by the positive integer n, the remainder is 5.
List all possible values of n.

Solution. Let q be the quotient when 800 is divided by n. The remainder is 5 if
n > 5 and 800 = qn+ 5, or equivalently 795 = qn. So all we need is the divisors of
795 greater than 5.
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Since 795 = 3 · 5 · 53, the divisors of 795 that qualify are 15, 53, 159, 265, and
795.

VII-7. Let τ = (
√
5+1)/2. Then τ is a root of x2−x−1 = 0. Find integers

a and b such that τ8 = aτ + b.

Solution. The exponent 8 is intimidating, so let’s first solve the same problem for
τ2. Because τ is a root of x2 − x− 1 = 0,

τ2 = τ + 1.

Now solve the problem for τ3. Multiply both sides of the preceding equation by
τ . We obtain τ3 = τ2 + τ . Substitute τ + 1 for τ2. We conclude that τ3 = 2τ + 1.

Multiply both sides of the preceding equation by τ , and substitute τ +1 for τ2.
We obtain τ4 = 3τ + 2. Repeat. In quick succession we get

τ5 = 5τ + 3, τ6 = 8τ + 5, τ7 = 13τ + 8, and τ8 = 21τ + 13.

Thus a = 21 and b = 13. The pattern is clear and we could easily continue.

Another way: Square both sides of the relation τ2 = τ + 1, then substitute τ + 1
for τ2. We obtain τ4 = 3τ + 2. Square again, substitute, and we are done.

Another way: Compute τ8 quickly by squaring three times. The result is (21
√
5 +

47)/2. Set this equal to aτ + b. After simplifying a bit, we obtain

21
√
5 + 47 = a

√
5 + a+ 2b.

It follows that a = 21 and a+ 2b = 47, giving b = 13.

Comments. 1. The first two solutions work with essentially no change for any root
of x2 − px − q = 0, where p and q are integers. The case p = q = 1 was chosen
because the familiar Fibonacci numbers show up.

The idea works with polynomials of higher degree. For example, let λ be a root
of x3 = px2 + qx + r. Given a positive integer n, we can compute integers an, bn,
and cn such that

λn = anλ
2 + bnλ+ cn

by closely imitating the argument that was used for τ .

2. The first solution got to τ8 slowly, in seven steps. In the second and third
solutions, τ8 was reached quickly by squaring twice. For any a, and any positive
integer n, we can get to an quickly. See VII-49 and IX-28 for other examples.

VII-8. Note that exactly one prime divides 22 − 1 and exactly two divide
24 − 1. Show that 28 − 1 has three prime factors, 216 − 1 has four, 232 − 1
has at least five, and 264 − 1 has at least six.
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Solution. Note that 28 − 1 = (24 − 1)(24 + 1). Since 24 − 1 has two prime factors,
while 24 + 1 = 17 and 17 is prime, it follows that 28 − 1 has three prime factors.
We could instead note that 28 − 1 = 255, then factor 255, an easy task. But when
a number has structure, it is usually a mistake wantonly to destroy that structure
by going to the decimal expansion.

Note that 216 − 1 = (28 − 1)(28 + 1). We know that 28 − 1 has three prime
factors. Also, 28 + 1 = 257, and a fairly quick check shows that 257 is prime.

We now deal with 232 − 1. Factor it as (216 − 1)(216 + 1). We saw that 216 − 1
has four prime factors. Since 216 + 1 is an odd number greater than 1, it has at
least one odd prime divisor p.

We show that p can’t be any of the prime factors of 216 − 1. Suppose to the
contrary that p divides 216−1. Since p also divides 216+1, it follows that p divides
(216 + 1)− (216 − 1), that is, p divides 2, which is impossible since p is odd.

We conclude that 232 − 1 has at least five prime factors. In fact, it has exactly
five, for 216 + 1 turns out to be prime.

Finally, look at 264 − 1. We know that 232 − 1 has at least five prime factors.
And 232+1 has at least one (odd) prime factor p. No such p can divide 232− 1, for
if it did it would divide (232 + 1)− (232 − 1), namely 2. Thus 264 − 1 has at least
six prime factors.

Comments. 1. In the same way, we can argue that 2128 − 1 has at least 7 prime
factors, 2256− 1 has at least 8, and in general 2(2

n)− 1 has at least n prime factors.
It follows that there are infinitely many primes. This result, with a different proof,
can be found in Euclid’s Elements.

2. We show that 216 + 1 is prime. If a number N is composite, then it can be
expressed as xy, where 2 ≤ x ≤ y. It follows that x ≤

√
N . Note that x has a

prime factor, possibly equal to x.
Thus if none of the primes up to

√
N divide N , we can conclude that N is

prime. Let N = 216 + 1. Then
√
N is a bit bigger than 28, so we only need to test

whether p divides N for primes p less than 256.
For each prime p less than 256, test whether p divides 65537. Finally we get

to use the calculator. The work is repetitive but doesn’t take long. None of these
primes divides 65537, so 216 + 1 is prime.

3. It turns out that 264 − 1 has more than 6 prime factors, for 232 +1 is not prime.
In 1640, Fermat conjectured that 2(2

n) + 1 is prime for every non-negative integer
n. The number is prime for n = 0, 1, 2, 3, and 4. Around 1750, Euler showed that
Fermat’s conjecture is false by observing that

232 + 1 = 641 · 6700417

(these two factors are prime). It is not known whether there is any n > 4 for which
2(2

n) + 1 is prime!

VII-9. Express 159999 as a product of primes.
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Solution. We could use a calculator to hunt for prime factors—it wouldn’t even
take long. But let’s exploit structural information. Note that

159999 = 160000− 1 = 4002 − 1 = (400− 1)(400 + 1).

Factor the relatively small numbers 399 and 401. It turns out that 399 = 202− 1 =
3 · 7 · 19, and that 401 is prime.

VII-10. Find positive integers a and b such that 9 < (a/b)2 < 10 and b is
as small as possible.

Solution. The fraction a/b should be between 3 and
√
10, which is about 3.1622.

Note that 31/10 is in the right region. The only question that remains is whether
we can find a fraction with a smaller denominator.

Take successively b = 2, 3, 4, . . . , 10. For any b, we need to check whether any
of 1/b, 2/b, 3/b, . . . , (b − 1)/b lies in the interval (0,

√
10 − 3). Since b ≤ 10, only

1/b has any chance of landing in the interval, so the checking goes quickly. After a
short while we arrive at the answer b = 7, a = 22.

Another way: When we are trying to solve a problem about integers, it is usually a
good idea to work as much as possible with integers rather than with alien quantities
like

√
10, or even fractions.

The inequality 9 < (a/b)2 < 10 can be rewritten as 9b2 < a2 < 10b2, so we are
looking for a perfect square between 9b2 and 10b2.

The first perfect square after 9b2 is (3b + 1)2. We want (3b + 1)2 < 10b2, or
equivalently b2 > 6b + 1. It is clear that 7 is the smallest positive integer that
satisfies this inequality. Thus b = 7 and a = 3b+ 1 = 22.

Comment. There is nothing really special about 9 and 10. Given integers m and
n with 0 < m < n, we can use the idea of the second solution to find efficiently the
fraction a/b with smallest denominator such that m < (a/b)2 < n.

VII-11. Let x, y, and z be integers such that x3 + 2y3 = 4z3. Show that
every power of 2 divides x, and conclude that x = y = z = 0.

Solution. Since x3 = 4z3 − 2y3, it follows that x3 is an even number, and therefore
x is even. Let x = 2x1. Substitute 2x1 for x in the given equation. We conclude
that 8x3

1 + 2y3 = 4z3 and therefore 4x3
1 + y3 = 2z3.

By the same reasoning, y is even, say y = 2y1. If we substitute and simplify, we
obtain 2x3

1 +4y31 = z3. But then z must be even, say z = 2z1. If we substitute and
simplify, we obtain x3

1 + 2y31 = 4z31 . Note that this equation has the same shape as
the original equation.

We repeat the argument, and conclude that x1 = 2x2, y1 = 2y2, and z1 = 2z2
for some integers x2, y2, and z2, and that x3

2 + 2y32 = 4z32 . And we can continue in
this way forever.

From the fact that x = 2x1 and x1 = 2x2, we conclude that x = 4x2. But
x2 = 2x3, so x = 8x3. Similarly, x = 16x4, and so on.
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The only integer that is divisible by every power of 2 is 0. Similarly we conclude
that y and z are divisible by every power of 2, and are therefore also equal to 0.

VII-12. Call a year lucky if the sum of the digits in the decimal represen-
tation of the year is divisible by 7. Find the shortest possible gap between
lucky years. Find the longest gap.

Solution. To counter pessimists, we show that it is possible to have two lucky years
in a row. If n is a positive integer whose decimal representation doesn’t end in a
9, then the digit sum of n+ 1 is 1 more than the digit sum of n. Thus if one digit
sum is divisible by 7 then the other can’t be.

Now examine years n whose decimal representation ends in d9, where d is a
digit other than 9. Then the digit sum of n is 8 more than the digit sum of n+ 1,
so the digit sums can’t be both divisible by 7. We can deal similarly with years n
whose decimal representation ends in d99 or d999 where d is a digit other than 9.

But if the decimal representation of n ends in d9999, where d is a digit other
than 9, then the digit sum of n is 35 more than the digit sum of n+ 1, and if one
digit sum is divisible by 7, so is the other. The first year n such that n and n+ 1
are both lucky is 69999—a long wait.

Unless n ends in 9, the digit sum of n+1 is 1 more than the digit sum of n. To
get the longest conceivable gap between lucky years, we need a lucky n that ends
in a 3, and such that the digit sum of n+ 7 leaves a remainder of 1 on division by
7. That way, the digit sums of n + 1, n + 2, . . . , n + 6 leave remainders of 1, 2,
. . . , 6 on division by 7, and just when we are ready for a lucky year, the remainder
starts at 1 again.

Note that 993 is lucky and 1000 has digit sum that leaves a remainder of 1 on
division by 7, so between the years 993 and 1006 there were 12 unlucky years, the
maximum possible. There will be 12 unlucky years between 7993 and 8006.

VII-13. Let a0 = 2 and let an+1 = a0a1a2 · · · an + 1 when n ≥ 0. (a) Show
that if m (= n, then am and an have no common factor greater than 1. (b)
Conclude that there are infinitely many primes.

Solution. (a) We may assume that m < n. Let d be a positive integer that divides
both am and an. Since m ≤ n − 1, we conclude that d divides a0a1 · · ·an−1. But
since

an = a0a1 · · · an−1 + 1,

and d divides an, it follows that d must divide 1, so d = 1.

(b) For any integer n, let pn be a prime that divides an, say the smallest such prime
if there is more than one. From part (a), we conclude that if m (= n then pm (= pn.
So p0, p1, p2, . . . are all different, and therefore there are infinitely many primes.

Comment. Calculate the first few ak. We get a0 = 2, a1 = 3, a2 = 7, a3 = 43, and
a4 = 1807. The first four are prime, but 1807 = 13 · 139.

Around −300, Euclid used an argument similar in spirit to prove that there are
infinitely many primes.
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VII-14. Find all positive integers n such that the decimal expansion of 1/n
has the shape .abcabcabcabc . . . , where a, b, and c are digits.

Solution. Let s = 100a+ 10b+ c. Then

1

n
= 0.abcabcabcabc · · · =

s

103
+

s

106
+

s

109
+

s

1012
+ · · · .

The infinite geometric series on the right has first term s/1000 and common ratio
1/1000, so it has sum s/999. Alternately, if we multiply both sides by 1000, we
obtain 1000/n = s+ 1/n. We conclude that the decimal expansion of 1/n has the
required shape precisely if 1/n = s/999 for some s, that is, if 999 = sn.

That happens if and only if n is a positive divisor of 999. Since 999 = 33 · 37,
the decimal expansion of 1/n has the required shape when n = 1, 3, 9, 27, 37, 111,
333, or 999.

VII-15. (a) Let C be the infinite set

{

21, 23, 25, . . . , 22n+1, . . .
}

.

Explain why the sum of one or more different members of C can never be a
perfect square.

b) Let a1 = 2, and for any n let an+1 = (a1 + a2 + · · ·+ an)2 +1. So a2 = 5,
a3 = 50, and a4 = 3250. Let D be the infinite set

{a1, a2, a3, . . . , an, . . . } .

Explain why the sum of one or more different members of D can never be a
perfect square.

Solution. We give an informal explanation instead of flooding the page with sym-
bols. Could 2471 + 2499 + 21945 be a perfect square? The terms have the common
factor 2471. So our sum is equal to 2471(1 + 228 + 21446), that is, 2471 times an odd
number. The largest power of 2 that divides our sum is therefore 2471. But the
largest power of 2 that divides a perfect square has the shape 2k where k is even,
and certainly 471 is not even.

The same idea works in general. Suppose that N is the sum of some elements
of C. Let 22a+1 be smallest among the numbers that were added together. So the
other numbers, if any, involve higher powers of 2. It follows that N is 22a+1 times
an odd number, so the largest power of 2 that divides N is 22a+1. Since 2a+ 1 is
odd, it follows that N can’t be a perfect square.

(b) Each number in D is 1 more than a perfect square. Note that the numbers in
D grow extremely fast. Let N be a sum of elements of D, and let an be the largest
number used in making N . We have

an = q2 + 1, where q = a1 + a2 + · · ·+ an−1.
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The other numbers used in making N add up to at most q. It follows that

q2 + 1 ≤ N ≤ q2 + q + 1.

Since the first perfect square after q2 is q2+2q+1, the number N can’t be a perfect
square.

Comments. 1. The Fermat numbers 22
0

+1, 22
1

+1, 22
2

+1, . . . also grow extremely
fast, and each is 1 more than a perfect square. Using an argument similar to that
of part (b), we could show that no sum of distinct Fermat numbers can be a perfect
square.

2. A better but harder problem is to ask whether there is a set of 1000 numbers
such that the sum of one or more of them is never a perfect square. To solve
that problem, we have to think about what might prevent sums from being perfect
squares. The sets C and D supply two such obstructions, divisibility considerations
and very fast growth.

VII-16. For any positive integer n, let f(n) be the integer closest to (
√
n+ 1+√

n)2. Find a simple formula for f(n).

Solution. We compute for a while to get our bearings. It turns out that f(1) = 6,
f(2) = 10, f(3) = 14, and f(4) = 18. It looks as if the answer could be 4n+2. We
show that this is correct by showing that f(n) is below 4n+ 2, but not by much.

Wherever
√
n+ 1 +

√
n goes,

√
n+ 1−

√
n likes to tag along. Note that

(
√
n+ 1 +

√
n)2 + (

√
n+ 1−

√
n)2 = 4n+ 2,

and therefore

(
√
n+ 1 +

√
n)2 = 4n+ 2− (

√
n+ 1−

√
n)2 = 4n+ 2−

1

(
√
n+ 1 +

√
n)2

.

Since 1/(
√
n+ 1 +

√
n)2 decreases as n increases, it is always less than or equal

to 1/(
√
2 + 1)2, which is roughly 0.172, and in particular much less than 1/2. It

follows that f(n) = 4n+ 2.

Another way: Since

(
√
n+ 1 +

√
n)2 = 2n+ 1 +

√

4n2 + 4n

we need to find the integer nearest to
√
4n2 + 4n. Since 4n2 < 4n2+4n < (2n+1)2,

the only candidates are 2n and 2n + 1, and surely 2n is not in the running. To
make sure, look at 2n+1−

√
4n2 + 4n and rationalize the numerator. We get 1/D,

where D = 2n+ 1 +
√
4n2 + 4n. In particular, D > 4n+ 1, so the integer closest

to
√
4n2 + 4n is indeed 2n+ 1.
Note that if we had written 2

√
n2 + n instead of

√
4n2 + 4n, the result would

be less obvious.
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VII-17. Find all possible values of the leftmost digit in the decimal expan-
sion of 2n.

Solution. If we compute the first few powers of 2, we quickly obtain 1, 2, 3, 4, 5, 6,
and 8 as possible initial digits, but 7 and 9 are reluctant to appear. We can either
persist in our computations or try to see what’s going on.

Here is a list of the first 20 powers of 2, deliberately arranged in two rows of 10
each.

1 2 4 8 16 32 64 128 256 512
1024 2048 4096 8192 16384 32768 65536 131072 262144 524288

Note that for any number a in the first row, the number b below it starts with the
same digit as a does. If we made a third row, and even a fourth, the pattern would
continue. The explanation is clear: b = 1024a, and 1024 is nearly equal to 1000.

This observation points to a solution. Since 1024 is a bit larger than 1000, we
can get an initial digit of 7 if we multiply 64 by 1024 the right number of times.
For example, we can multiply by (1024)k, where k is the smallest integer such that
(1024)k > 70/64. It turns out that k = 4. So 7 is the first decimal digit of 246. It
is also the first decimal digit of 256, 266, . . . , 296.

The same idea works for 9. Multiply 8 by (1024)k where k is the smallest integer
such that (1024)k > 9/8. It turns out that k = 5, so 9 is the first decimal digit of
253.

Comment. The solution depended on the “accidental” (but very useful) fact that
1024 is close to a power of 10. We sketch an alternative approach that uses loga-
rithms. Let f(n) = n log 2− )n log 2*. So f(n) is the fractional part of log(2n).

By manipulating logarithms, we can see that 2n has leftmost digit equal to 7
precisely if 7 < 10f(n) < 8. So we want to find an integer n such that the fractional
part of n log 2 lies between log 7 and log 8. For assurance that we can closely specify
the fractional part of n log 2, we could use ideas like those in IX-3, but here we just
play with the calculator.

The calculator says that we want the fractional part of (0.30129995)n to lie
roughly between 0.8451 and 0.903. The number n shouldn’t be too large, to make
sure that the calculator approximations are close enough to the truth.

The eye focuses on the “01” in the decimal expansion of log 2. Multiply log 2
by 10, and then by an integer k such that (0.0129995)k is in the right range. It is
easy to see that k = 65 works. We get n = 650, a number much larger than the 46
we found earlier. A more sophisticated version of this approach, using continued
fractions, will get us our 46.

VII-18. The positive integer N is perfect if the sum of the positive divisors
of N is equal to 2N . For example, 6 is perfect, since the positive divisors of
6 are 1, 2, 3, and 6, and 1 + 2 + 3 + 6 = 12. Show that if 2n − 1 is a prime
number then 2n−1(2n − 1) is perfect.
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Solution. Let q = 2n − 1. Since q is prime, the positive integers that divide N are
1, 2, 4, . . . , 2n−1 and q, 2q, 4q, . . . , 2n−1q.

The sum of the positive divisors of N is therefore

(1 + q) + 2(1 + q) + 4(1 + q) + · · ·+ 2n−1(1 + q).

But 1 + q = 2n, and the geometric series 1 + 2 + 4 + · · ·+ 2n−1 has sum 2n − 1, so
the sum of the positive divisors of N is equal to 2n(2n − 1), that is, 2N .

Comment. The result above can be found in Euclid’s Elements (ca.−300). Books 7,
8, and 9 of the Elements deal with Number Theory, not Geometry. The result about
perfect numbers is the culminating theorem of Book 9.

There is much non-mathematical speculation associated with perfect numbers:
God created the world in 6 days because 6 is perfect, or maybe the other way
around; the lunar month lasts 28 days because 28 is perfect. Number mysticism
motivated some of the early mathematics, just as astrology motivated parts of
astronomy.

Around 1750, Euler proved that every even perfect number must have shape
2n−1(2n−1), where 2n−1 is prime. It is still not known whether there are any odd
perfect numbers, but if there is one it has at least 420 prime factors and is greater
than 1.9× 102550.

Primes of the form 2n− 1 are called Mersenne primes. As of now, 38 Mersenne
primes are known, and hence 38 perfect numbers. The largest currently known
Mersenne prime is 26972593 − 1. It was found on June 1, 1999 by Nayan Hajrat-
wala. Several Mersenne primes, including this one, have been discovered through
the Great Internet Prime Search. The task of searching is distributed among a
large number of personal computers, which in effect form an enormously powerful
supercomputer. Anyone can play.

VII-19. It is easy to verify that 3 · 4 = 12, 33 · 34 = 1122, and 333 · 334 =
111222. Does this pattern continue forever?

Solution. The decimal representation of 10k − 1 consists of k 9’s, so the represen-
tation of (10k − 1)/3 consists of k 3’s, and the representation of (10k + 2)/3 has
(k − 1) 3’s followed by a 4. We have

(

10k − 1

3

)(

10k + 2

3

)

=
102k + 10k − 2

9
=

102k − 1

9
+

10k − 1

9
.

The representation of (102k − 1)/9 consists of 2k 1’s, while the representation of
(10k − 1)/9 consists of k 1’s. Add. The sum has k 1’s followed by k 2’s.

VII-20. Find the first three positive integers a such that a999 + 1 is a
multiple of 128.
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Solution. If n is odd, then

xn + 1 = (x+ 1)(xn−1 − xn−2 + · · ·− x+ 1).

Let n = 999. For any integer a, the sum a998 − a997 + · · · − a + 1 is odd. This is
obvious if a is even. And if a is odd we are adding together an odd number of odd
numbers.

Thus the only way to make a999 + 1 divisible by 128 is to make sure that 128
divides a + 1. The first positive a that works is therefore 127, the second is 255,
and the third is 383.

VII-21. Show that the only integer solutions of x log 2 = y log 3 are x =
y = 0. Here log means logarithm to the base 10.

Solution. Suppose that x log 2 = y log 3. Then

10x log 2 = 10y log 3.

But 10x log 2 = (10log 2)x = 2x and similarly 10y log 3 = 3y, so

2x = 3y.

That can’t happen if x and y are positive integers, since 2x is divisible by 2 but 3y

isn’t. If x (and therefore y) is negative, then since (−x) log 2 = (−y) log 3, we reach
the same conclusion.

Comment. The same argument works for logarithms to any base a. But we get
nothing new: for any fixed base a, loga u is a constant multiple of log u, and therefore
the assertion x loga 2 = y loga 3 is equivalent to the assertion x log 2 = y log 3.

VII-22. Let N = 1!+2!+4!+8!+16!+32!+64!. Find the remainder when
N2 is divided by 7.

Solution. The terms from 8! on are divisible by 7, and 1!+2!+4! leaves a remainder
of 6 on division by 7, so N = 7k+6 for some integer k that we don’t need to know.
We want the remainder when (7k + 6)2 is divided by 7. Since

(7k + 6)2 = 7(7k2 + 12k) + 62,

the remainder when (7k + 6)2 is divided by 7 is the same as the remainder when
62 is divided by 7, namely 1.

Comment. Suppose that we are only interested in the remainder on division by m.
Then in calculations that involve only addition, subtraction, and multiplication we
can replace at will any number x by any y that differs from x by a multiple of m.
In particular, any multiple of m can be replaced by 0, in a certain sense it is 0.

Here is a right way to think while figuring out the remainder when N2 is divided
by 7. In N , the stuff past 4! is basically the same as 0, and 1! + 2! + 4! “is” 6, so
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N2 “is” 36, which “is” 1. If our calculator is broken and we can’t find 6 · 6, note
that 6 “is” −1 (they differ by a multiple of 7), so 6 · 6 “is” (−1)(−1).

The replacements described above work when we add or multiply, but not when
we work with exponents. For example, 1 and 8 leave the same remainder on division
by 7, but 21 and 28 do not. (There are regularities for exponentiation, but they
are not the same as the ones for addition and multiplication.)

The above informal reasoning can be made fully precise by using the notion
of congruence developed around 1800 by Carl Friedrich Gauss. Congruences have
been an indispensable tool in number theory ever since.

VII-23. The integer a is said to be relatively prime to b if 1 is the only
positive integer that divides both a and b. For example, 14 is relatively
prime to 15. How many positive integers less than 162 are relatively prime
to 162?

Solution. Since 162 = 2 · 34, we need to count the integers from 1 to 161 which are
divisible neither by 2 nor by 3. Listing is easy: 1, 5, 7, 11, 13, . . . . Counting isn’t
too bad, even if we don’t stop to think.

But we can save work if we notice that a is relatively prime to 162 if and only
if a + 6 is relatively prime to 162. So the chunks 1 to 6, 7 to 12, 13 to 18, and so
on each have the same number of members of our list. There are 162/6 of these
chunks, and each chunk contains two numbers relatively prime to 162, for a total
of (2)(162/6).

Another way: There are 162 numbers from 1 to 162. The 81 even numbers are not
relatively prime to 162. Throw them away. That leaves 81 odd numbers. Every
third one of them is divisible by 3. Discard these 27 numbers. That leaves the 54
numbers that are relatively prime to 162.

Comment. Let φ(n) be the number of integers from 1 to n that are relatively prime
to n. The calculation above shows that φ(162) = 54. The function φ is usually
called the Euler phi-function. The phi-function plays an important role in number
theory.

It is not hard to find φ(n) if we know the prime factorization of n. Calculating
φ(pn) when p is prime makes for a nice accessible problem. We need to count the
integers from 1 to pn which are relatively prime to pn. There are pn numbers from
1 to pn. The only ones that are not relatively prime to pn are the multiples of p.
There are pn−1 multiples of p in our interval, and therefore φ(pn) = pn − pn−1.

VII-24. Find the least positive integer n such that 1212 divides n!.

Solution. Since 1212 = 224 ·312, we want (the prime factorization of) n! to “contain”
at least twenty-four 2’s, and at least twelve 3’s.

Divide the numbers from 1 to n into groups of three, with maybe one or two
left over. Every group of three consecutive numbers contributes at least one 3 (it
can contribute more). So to take care of the 3’s, we don’t need more than twelve
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groups of three. And every group of four consecutive numbers contributes at least
three 2’s, so we don’t need more than eight such groups. It follows that n ≤ 36.

Because 9, 18, and 36 each contribute an extra 3, while 27 contributes two, 36!
has five more threes than we need. Thus there are still enough 3’s if we step back
all the way to 27!. Is 27! good enough? It is not hard to check that there are only
twenty-three 2’s in 27!, so n = 28.

VII-25. Find the least positive integer N such that 243 divides N and the
decimal digits of N are all the same.

Solution. Since 243 = 35, N must have at least five 3’s in its prime factorization.
Let Uk be the number whose decimal expansion consists of exactly k 1’s. Then
N = dUk, where d is a digit. We can get a couple of 3’s by taking d = 9, but that
still leaves us three 3’s short. So 27 must divide Uk.

Recall that 9 divides x if and only if 9 divides the sum of the decimal digits of
x. It follows that k must be a multiple of 9. The first possibility is thus k = 9.
That produces a number small enough to fit into a calculator. We find that U9 =
9 · 12345679—pretty! But 3 doesn’t divide 12345679, so U9 doesn’t have enough
3’s.

What about k = 18? Divide U18 by U9. We can do the division in our heads by
thinking about the ordinary paper and pencil division process. We get U18 = qU9,
where q has decimal expansion that looks like 1, then a bunch of 0’s, then a 1. The
sum of the digits of q is not divisible by 3, so U18 has no more 3’s in it than U9 did.

What about k = 27? Again, divide by U9. We get U27 = qU9, where the
decimal expansion of q has exactly three 1’s and quite a few 0’s. Thus q is divisible
by 3 but not by 9. We conclude that 9U27 is the smallest positive integer that
works.

Comment. By induction or otherwise one can show that 3k is always the highest
power of 3 that divides U3k.

VII-26. Find the remainder when 2400 + 1 is divided by 240 − 1.

Solution. We can use formal long division or a trick. Here’s the trick. For brevity,
let x = 240. Then

2400 − 1

240 − 1
=

x10 − 1

x− 1
= x9 + x8 + · · ·+ x+ 1.

Note that 2400+1 = (2400− 1)+2. So if we divide 2400+1 by 240− 1, the quotient
is x9 + x8 + · · ·+ 1 and the remainder is 2.

Comment. What we did probably shouldn’t be called a trick. There is an old joke
that a trick used more than once is a Method, and the idea that we used crops up
often.

The formal long division argument should also be carried out. It is not difficult,
if we use the abbreviation x = 240. As a variant, we could look at the same problem
with 240 − 1 replaced by 240 + 1.
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VII-27. Find the rightmost non-zero digit in the decimal expansion of 49!.

Solution. Since 49! is fairly large, maybe we should think a bit before picking up the
calculator. If we were dealing with 2000!, thinking first would be almost necessary,
unless we were willing to write a computer program to do the calculation.

How is the last non-zero digit of a product ab related to the last non-zero digit
of a and of b? With last digits, the answer is clear: to find the last digit of ab,
take the last digits of a and b, multiply, and if necessary take the last digit of the
product. That’s not quite true for last non-zero digits: 6 · 15 = 90, and yet the last
non-zero digit of 6 · 5 is 3. But everything is fine as long as we avoid multiplying
by numbers whose last non-zero digit is 5.

The last digit of 4! is 4. So is (for good reason) the last digit of 6 · 7 · 8 · 9. And
last digits of 11, 12, . . . match the last digits of 1, 2, . . . . So if we multiply together
all the numbers from 1 to 49 which are not divisible by 5, the result r has last digit
6.

We now deal with the multiples of 5. The product of these is

(1 · 2 · 3 · 4)(6 · 7 · 8 · 9)(510).

Multiplication by the first two parts leaves us with a last digit of 6. We must now
deal with 510. Divide by 2 ten times, then multiply by 1010. Since r is divisible by
many 2’s, the final digits when we divide r repeatedly by 2 are 8, 4, 2, 6, 8, 4, 2, 6,
8, 4. Thus the last non-zero digit of 49! is 4.

Comment. We can ask the closely related but harder: for what n does the decimal
expansion of n! end in a 6 followed by ten 0’s? The answers are n = 45, 46, and
48. The ideas used in dealing with 49! can be developed into general machinery.

VII-28. Find an integer n such that 63 divides 100n + 81.

Solution. Note that 100n+81 is divisible by 63 if and only if 100n+81 is divisible
by 9 and by 7.

Since 9 divides 81, it follows that 9 divides 100n+81 if and only if 9 divides n.
Let n = 9q. Then 100n+ 81 = 9(100q+ 9). We need to choose q so that 7 divides
100q + 9.

But 100q + 9 = (98q + 7) + (2q + 2), and 7 divides 98q + 7, so 7 should divide
2q+2, or equivalently 7 should divide q+1. It is impossible not to spot the answer
q = 6.

Since n = 9q, we can take n = 54. There are infinitely many other solutions.
For 63 divides 100n+ 81 if and only if 63 divides 100(n + 63k) + 81. Thus other
possibilities for n are 117, 180, −9, and so on.

Comment. The numbers were small, so we used ad hoc methods. Note the use of
Divide and Conquer: a problem about the medium-sized number 63 was solved by
splitting the problem into two subproblems involving the smaller numbers 9 and 7.

There are efficient general procedures for answering questions like this even for
very large numbers. Look for the Extended Euclidean Algorithm in Number Theory
books or on the Internet.



CHAPTER 7. NUMBER THEORY 235

VII-29. Find the least positive integer n such that 99 divides 2n − 1.

Solution. We could start calculating. There are difficulties with that, since the
problem poser could have sent us on a wild goose chase—is there really such an n?
Also, we could soon be looking at numbers too large to fit in a calculator.

We show how to avoid large numbers. We want to find an n such that the
remainder when 2n − 1 is divided by 99 is 0, or equivalently the remainder when
2n is divided by 99 is 1. Let r be the remainder when 2k is divided by 99. We find
the remainder when 2k+1 is divided by 99.

We have 2k = 99q + r for some quotient q, and therefore

2k+1 = 2(2k) = 2(99q + r) = 198q + 2r.

Since 99 divides 198, the remainder when 2k+1 is divided by 99 is the same as the
remainder when 2r is divided by 99, and that’s easy to find.

Make a list of remainders when 2k is divided by 99. We are looking for a
remainder of 1, so start say at k = 7, since nothing below 7 has a chance. We get
remainders 29, 58, 17, 34, and so on. If we have a programmable calculator or a
computer, we can write a program to do the work. But we can also grind things
out. The least positive n that gives a remainder of 1 is 30.

Another way: We need the smallest positive n such that 2n − 1 is divisible by 9
and by 11. These are a lot smaller than 99, and that may make up for having to
look at two problems.

First deal with 9. Just as in the first solution, note that if r is the remainder
when 2k is divided by 9, then the remainder when 2k+1 is divided by 9 is the same
as the remainder when 2r is divided by 9. We get the sequence of remainders 2, 4,
8, 7, 5, 1, 2, . . . .

The remainder is 1 at n = 6. Note also that there is cycling, so the remainder
is 1 at n = 6, n = 12, n = 18, and so on, and nowhere else.

Repeat the computation for 11. The remainders on division by 11 are 1 for
n = 10, 20, 30, and so on. The smallest n which is in both lists is 30.

Comment. We show that without doing any calculation, we can be completely
confident that there is an n such that 99 divides 2n − 1.

Imagine computing the remainders when 2n − 1 is divided by 99, for n = 1, 2,
. . . , 99. The remainder when an integer N is divided by 99 must be one of 0, 1,
. . . , 98. So in our computations, either we bump into a remainder of 0, or some
remainder occurs two or more times.

Suppose that 2s − 1 and 2t − 1 give the same remainder on division by 99,
where 1 ≤ s < t ≤ 99. Then 99 divides the difference between the numbers, namely
2t − 2s. Since that difference is 2s(2t−s − 1), we conclude that 99 divides 2n − 1,
where n = t− s. So we were sure to bump into a suitable n sooner or later.

Exactly the same argument shows that if a and m are positive integers which
have no common divisor greater than 1, then there is a positive integer n, with
n ≤ m− 1, such that m divides an − 1.
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VII-30. Find the smallest positive integer n such that 2n is a perfect square,
3n is a perfect cube, and 5n is a perfect fifth power.

Solution. The positive integer x is a perfect square precisely if any prime p occurs
to an even power in the prime factorization of x. More generally, x is a perfect
k-th power iff for any prime p, the number of p’s in the prime factorization of x is
a multiple of k.

Any perfect square that is divisible by 2 must be divisible by 22. So if 2n is to
be a perfect square, 4 must divide 2n, and therefore 2 must divide n. Similarly, we
find that 3 and 5 must divide n. Thus n = 2a3b3cq, where a, b, and c are positive
and q is not divisible by 2, 3, or 5.

For 2n to be a perfect square, a+1, b, and c must be even. Similarly, for 3n to
be a perfect cube, a, b+ 1 and c must be divisible by 3, and for 5n to be a perfect
fifth power, a, b, and c+ 1 must be divisible by 5.

First we find a such that 2 divides a + 1 and 3 and 5 divide a. So a must be
odd and 15 must divide a. The smallest possible a is 15. Similarly, the smallest b
is 21, and the smallest c is 24. So n = 215321524.

VII-31. Let N = 32003 + 52003 + 72003. Find the rightmost digit in the
decimal expansion of N .

Solution. The rightmost digit in the decimal expansion of 5n is 5 for every positive
n. Look now at powers of 3, starting with 31. The rightmost digits are 3, 9, 7, 1,
3, 9, and so on. Note the cycling with period 4. Thus the rightmost digit of 22003

is the same as the rightmost digit of 33, namely 7.
Repeat the calculation for powers of 7. We get 7, 9, 3, 1, 7, . . . , so the rightmost

digit of 72003 is 3. Since 7 + 5 + 3 = 15, the required rightmost digit is 5.

Another way: The powers 3n end in turn with 3, 9, 7, 1, . . . , and the powers 7n end
with 7, 9, 3, 1, . . . . Note that 3n + 7n ends in 0 for all odd n, so plays no role.

Comment. Look at the last digit of an+(10−a)n, or more generally at the remainder
when an + (d− a)n is divided by d. Imagine multiplying d+ (−a) by itself n times
and expanding. We get a bunch of terms that contain d and a final term (−a)n.
If n is odd, this final term is −an. Thus an + (d − a)n is equal to an − an plus
something divisible by d, so it is divisible by d. In particular, because 2003 is odd,
32003 + 72003 is a multiple of 10.

VII-32. Find three consecutive integers greater than 20 such that the small-
est is a multiple of 20, the second a multiple of 21, and the third a multiple
of 22.

Solution. Let the smallest of the three numbers be 20a. We want 21 to divide
20a+ 1. Now 20a = 21a− a, so 21 divides 20a+ 1 if and only if 21 divides a− 1,
that is, iff a = 21b+ 1 for some b.

Finally, 22 should divide 20(21b+1)+2; equivalently, 11 should divide b. Putting
b = 11 gives a = 232, so the smallest numbers that work are 4640, 4641, and 4642.
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In general, b = 11t for some positive integer t, so the first number must have shape
4620t+ 20.

Another way: Let the numbers be N + 20, N + 21, and N + 22. Since 20 divides
the first, 20 must divide N . Similarly, 21 and 22 divide N . The smallest positive
integer N simultaneously divisible by 20, 21, and 22 is their least common multiple,
namely 4620.

Comments. 1. In the first solution, the three divisibility conditions were handled
one at a time. In the second solution, we took advantage of the symmetry and
handled them all at once.

2. There are general techniques for finding a number x such that m1 divides x−a1,
m2 divides x − a2, m3 divides x − a3, and so on. To find information, search in
Number Theory books or on the Web for the phrase Chinese Remainder Theorem.

VII-33. A jar contains 1000 coins, worth altogether $99.95. Any coin is
either a five-cent piece, a dime, or a quarter. Find the largest number of
quarters there could be in the jar.

Solution. Suppose that there are x five-cent pieces, y dimes, and z quarters. The
coins are worth 5x + 10y + 25z cents, so 5x + 10y + 25z = 9995. Equivalently,
x+ 2y + 5z = 1999. Since there are 1000 coins, x+ y + z = 1000. From these two
equations, we obtain y + 4z = 999. The largest multiple of 4 less than 999 is 996,
so the largest possible z is 249.

Another way: We can proceed more informally, taking advantage of the fact that
the numbers are easy to work with. One way of getting $99.95 with 1000 coins is
to use 999 dimes and 1 five-cent piece.

Trade in dimes for five-cent pieces and quarters, leaving the total value and the
number of coins unchanged. The smallest possible trade is 4 dimes for 3 five-cent
pieces and 1 quarter. Do this as often as possible. The largest multiple of 4 that is
below 999 is 996, so we make 996/4 trades and end up with 249 quarters.

VII-34. A rooster is worth five ch’ien, a hen three ch’ien, and three chicks
one ch’ien. With 100 ch’ien we buy 100 of them. How many roosters, hens,
and chicks are there?

Solution. Suppose that there are x roosters, y hens, and z chicks. Then

x+ y + z = 100 and 5x+ 3y +
z

3
= 100.

Eliminate z by “multiplying” the second equation by 3, then subtracting the first
equation. We get 14x+8y = 200, or equivalently 7x+4y = 100. There is no sense
in developing general theory for such a simple equation. An obvious solution is
x = 0, y = 25, which gives z = 75.

To get all of the solutions, note that if 7x+4y = 100 and 7x′+4y′ = 100, then
7(x′ − x) = 4(y − y′), and therefore in particular 4 must divides x′ − x. And every
time that we increase x by 4, we must decrease y by 7.
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Thus the general solution in integers is x = 4t, y = 25− 7t, z = 75 + 3t, where
t is an integer. But our numbers must be non-negative, so t only takes on the four
values 0, 1, 2, and 3.

Comment. This problem comes from the fifth-century mathematical manual of
Zhang Qiujian, but may be much older. “Hundred Fowl” problems occur repeatedly
in the Chinese literature.

Somehow, the problem travelled to Western Europe, probably through Arab
intermediaries. There are seven “Hundred Fowls” problems in Propositiones ad
acuendos juvenes (Problems to Sharpen the Young), a collection attributed, prob-
ably incorrectly, to the late eighth-century scholar Alcuin of York. In one of these
problems, 100 bushels of barley are distributed among 100 people, each man receives
3 bushels, each woman 2, and every two children get a bushel—in old problems,
women always get less.

Mahāv̄ıra (ninth century) has a problem in which pigeons are sold at 5 for 3
coins, sārasa birds at 7 for 5 coins, swans at 9 for 7 coins, and peacocks at 3 coins
each. A man bought for the king’s son 100 birds and paid 100 coins. In Euler’s
Algebra, someone buys 100 animals for 100 crowns, hogs at 3 1

2 crowns each, goats
at 1 1

3 crowns each, sheep at 1
2 crown each.

The ninth-century mathematician abū Kāmil tackles more elaborate “Hundred
Fowls” problems. For example, he asks for the ways that one can buy 100 birds
with 100 drachmas, if ducks cost 2 drachmas each, hens are 1 drachma, doves are
2 per drachma, ring-doves are 3 per drachma, and larks are 4 per drachma. Most
mathematicians of the time were satisfied to find a single solution to a problem.
Abū Kāmil took a more modern point of view, and wanted all solutions. He asserted
that in this case there are 2696. There are in fact 2678.

VII-35. The arithmetic progression 9, 32, 55, 78, . . . begins with the perfect
square 9. Find the sum of the next three perfect squares in this arithmetic
progression.

Solution. We could find the next three squares by playing with a calculator, or
programming a computer to search. But thinking is faster and easier. The arith-
metic progression has common difference 23, and therefore the terms are 9 + 23n,
for n = 0, 1, 2, and so on.

We want 9 + 23n to be a perfect square, say x2. Rewrite 9 + 23n = x2 as
23n = x2− 9 = (x− 3)(x+3). We need to make sure that 23 divides x− 3 or x+3.
The smallest x greater than 3 comes from putting x + 3 = 23; so x2 = 400. The
next x comes from putting x− 3 = 23; so x2 = 676. Finally, the next x is obtained
by putting x+ 3 = 2 · 23; so x2 = 1849. The required sum is 2925.

VII-36. Find the largest integer k such that 3k divides 100!.

Solution. We need to “count 3’s” in the numbers from 1 to 100. Note that 3
contributes one 3, as does 6. Then 9 contributes two 3’s, and 12 contributes another
one. So in particular the largest k such that 3k divides 12! is 5. We can continue
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all the way to 100. The work is straightforward, and if we are careful we should
find the answer. But there are faster ways.

One number, namely 81, contributes four 3’s. Two numbers, namely 27 and
54, contribute three each. The multiples of 9 apart from 81, 27, and 54 contribute
two each. There are 11 multiples of 9 from 1 to 100, so 8 numbers contribute two
3’s. Finally, the rest of the multiples of 3 contribute one each. There is a total of
33 multiples of 3 from 1 to 100, so 22 of them contribute one 3 each. Thus

k = (1 · 4) + (2 · 3) + (8 · 2) + (22 · 1) = 48.

Another way: There is a more efficient way of counting. Imagine that each number
from 1 to 100 has to pay a one dollar fine for each 3 “in it.” There are 33 numbers
which are multiples of 3. Collect a dollar from each one. Then collect an additional
dollar from each of the 11 multiples of 9. Then collect still another dollar from each
of the 3 multiples of 27, and finally collect a dollar from the only multiple of 81.
Each number has now paid its proper fine, and the fines total 33 + 11 + 3 + 1.

Comment. The second argument generalizes nicely. Let p be a prime, and let pk

be the largest power of p that divides n!. Collect a dollar from each multiple of p in
the interval from 1 to n. How many dollars do we get? There are )n/p* multiples
of p from 1 to n, where )x* denotes the greatest integer less than or equal to x. So
for example )100/3* = 33.

Now collect an additional dollar from each multiple of p2 in our interval. There
are )n/p2* of these. Go on in this way. Ultimately we find that

k =

⌊

n

p

⌋

+

⌊

n

p2

⌋

+

⌊

n

p3

⌋

+ · · · .

The theme crops up often in mathematical contests. Usually the question is
about the number of 0’s that n! ends in. So we are looking for the largest power of
10 that divides n!. Since 10 isn’t prime, we can’t apply the idea directly. But there
are always more 2’s than 5’s in n!. Since 5’s are the limiting resource, we can take
p = 5.

VII-37. (a) The numbers 16000, 16001, 16002, . . . , 16006 are divided by 7.
Find the sum of the seven remainders so obtained. (b) Find the sum of the
remainders when 16000, 16100, 16200, . . . , 16600 are divided by 7.

Solution. (a) Divide 16000 by 7; the remainder is 5. We could repeat the division
with 16001, but it is obvious that the remainder advances by 1 to 6. For 16002, the
remainder again “advances by 1,” to 0. The remainders are 5, 6, 0, 1, 2, 3, 4, and
their sum is 21.

(b) The first remainder is 5. For the next, note that we are adding 100, which is
98+2. Since 98 is a multiple of 7, it follows that the remainder of 16100 on division
by 7 “advances” by 2 from 5, so it is 0. Add 100 again, and the remainder advances
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by 2 again. So the sequence of remainders is 5, 0, 2, 4, 6, 1, 3. Again the sum is
21.

Another way: In part (a), we don’t need to calculate any remainders! For our sum
is the sum of the remainders when 7 consecutive numbers are divided by 7. These
remainders must be 0, 1, . . . , 6 in some order, so the sum is 21.

The same idea works for (b). Look at the remainders when the numbers 16000+
100t are divided by 7, where t ranges from 0 to 6. These remainders are all different.
For if two of the numbers had the same remainder, their difference would be divisible
by 7, which is clearly not the case. It follows that the remainders are again 0, 1,
. . . , 6 in some order.

Comment. Part (a) generalizes nicely. Let m be a positive integer. Add up the
remainders when m consecutive numbers are divided by m. These remainders are
0, 1, 2, . . . , m− 1 in some order, so the sum is always m(m− 1)/2.

For part (b), suppose that a and d have no common factor greater than 1. Then
the remainders when a, a+ d, a+2d, . . . , a+(m− 1)d are divided by d are just 0,
1, . . . , m − 1 in some order. If m and d do have a common factor greater than 1,
the situation is somewhat more complicated. This could be an interesting problem
to explore.

VII-38. How many different positive integers divide 22 · 3 · 5 · 7?

Solution. Our number doesn’t have many positive divisors, so we can list them all
and then count. To make things interesting, look at a more general problem. Let
N = 2a · 3b · 5c · 7d, where a, b, c, d are positive integers. We calculate the number
of positive divisors of N .

We first count the positive divisors of 2a. Here is a complete list: 20, 21, . . . ,
2a, altogether a+ 1 of them. Next count the positive divisors of 2a · 3b. We make
all of them by multiplying any one of the a+1 positive divisors of 2a by one of 30,
31, . . . , 3b. Thus there are (a+ 1)(b+ 1) such divisors.

How many positive divisors does 2a · 3b · 5c have? We make such a divisor by
multiplying any one of the (a+1)(b+1) positive divisors of 2a · 3b by one of 50, 51,
. . . , 5c. So there are (a + 1)(b + 1)(c + 1) such divisors. Similar reasoning shows
that N has (a+ 1)(b + 1)(c+ 1)(d+ 1) positive divisors. In particular, 420 has 24
positive divisors.

Comment. There is a more picturesque way of describing the same idea. In front
of us, we have a box that has a 2’s in it, another box with b 3’s, another with c 5’s,
and so on.

To make a positive divisor of 2a · 3b · 5c · 7d, first we decide how many 2’s to
grab from the first box. There are a + 1 choices, since we might grab no 2’s. For
every choice from the first box, there are b + 1 ways of deciding how many 3’s to
take from the second box, and so on.
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VII-39. If we don’t count order, the number 5 can be written as a sum of
one or more positive integers in exactly seven different ways, namely 5, 4+1,
3+2, 3+1+1, 2+2+1, 2+1+1+1, and 1+1+1+1+1. (Mathematicians
say that 5 has seven partitions.) How many partitions does the number 7
have?

Solution. We list carefully the partitions and then count. It is convenient to first
count the partitions of 6. Think of the partitions of 6 that have a 1 in them.
Remove the last 1 from these partitions. We get all the partitions of 5, so there are
7 partitions of 6 that have a 1. The rest are so easy to list that maybe we shouldn’t
think too much: they are 6, 4 + 2, 3 + 3, and 2 + 2 + 2, for a total of 11.

Now count the partitions of 7. By the same argument as above, 7 has 11
partitions that have a 1. The rest of the partitions can be listed explicitly: 7, 5+2,
4 + 3, 3 + 2 + 2, for a total of 15. (The fact that we went up by 4 and then by 4
again is an accident that doesn’t recur.)

VII-40. Find the largest integer n such that n+ 7 divides n3 + 7.

Solution. Divide the polynomial x3 + 7 by x+ 7. We get

x3 + 7

x+ 7
= x2 − 7x+ 49−

336

x+ 7
.

Since n2− 7n+49 is an integer for every integer n, we only need to find the largest
n such that 336/(n+ 7) is an integer. It is clear that n = 329.

Comment. Let P (x) be a polynomial with integer coefficients, and let a be an
integer. What is the largest integer n such that n− a divides P (n)? The argument
is essentially the same as in the numerical example above. If we divided P (x) by
x− a, we would get

P (x)

x− a
= Q(x) +

r

x− a
,

where Q(x) is a polynomial with integer coefficients, and r is the remainder when
P (x) is divided by x− a. By the Remainder Theorem, r = P (a).

We conclude that P (n)/(n − a) is an integer precisely if P (a)/(n − a) is an
integer. If P (a) = 0, then P (n)/(n − a) is an integer for any n (= a. If P (a) (= 0,
then the largest n for which P (n)/(n− a) is an integer is a+ |P (a)|.

VII-41. Describe all of the ways to express 500 as a sum of consecutive
positive integers.

Solution. The numbers are small enough that we can experiment. Does just 500
by itself qualify? That depends on how we use language. A mathematician would
say that it does. Others might want to see a plus sign before calling an expression
a sum.
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We can try to use two numbers. They would have to average out to 250, and
it is clear that nothing works. The same thing happens with three numbers and
with four. We can do it with five: 98, 99, 100, 101, 102. We can push on, learning
shortcuts along the way, and after a while find a complete answer, but there is a
better way.

First we try to express 500 as a sum of an odd number 2k+1 of positive integers.
Let the middle number be m. So (2k + 1)m = 500. Since the numbers should be
positive, m should be bigger than k. We can have 2k+1 = 1, giving a bare 500. Or
2k+1 = 5, giving m = 100, and the numbers 98, 99, 100, 101, 102. Or 2k+1 = 25,
giving m = 20 and the numbers 13, 14, . . . , 25, . . . , 37. Putting 2k + 1 = 125
makes m smaller than k, so it is only allowed if we remove the condition that the
numbers have to be positive.

Now try to express 500 as a sum of an even number 2k of positive integers.
Let the two middle numbers be m and m+ 1. Then the sum of all the numbers is
k(2m + 1). In order to make all the numbers positive, we need m ≥ k. The only
possibility is 2m+1 = 125, which gives the numbers 59, 60, 61, 62, 63, 64, 65, 66.

Comment. We could also have solved the problem by letting the numbers be a, a+1,
. . . , a+(k−1), and using the formula for the sum of an arithmetic progression. But
the expressions we get are uglier—try it. Exploiting the symmetry by concentrating
on the middle point makes things easier.

The requirement that the numbers be positive makes the problem more messy.
It isn’t hard to develop a general theory if numbers are allowed to be negative.

We can generate other problems that use the same ideas. For example, we
can ask for all the ways of expressing a given integer as a sum of consecutive odd
positive integers, or as a sum of consecutive integers in the sequence 2, 5, 8, 11,
. . . .

VII-42. Call a set of integers good if there are three numbers in the set
whose sum is divisible by 3. Find the smallest n such that every set with n
or more elements is good.

Solution. How can a + b + c be divisible by 3? After a little playing we can see
that the remainders when we divide a, b, and c by 3 must either be all the same,
or they must be 0, 1, and 2 in some order.

If there are seven or more numbers, then some remainder occurs at least three
times, so any set with seven or more elements is good. What about sets of six? If
some remainder occurs three or more times, the set is good. If none does, then two
each of the remainders must be 0, 1, and 2, so the set is good.

What about sets of five? Again, if some remainder occurs three or more times,
then the set is good. And if all remainders occur two or fewer times, then each of 0,
1, and 2 must occur, and again the set is good. What about sets of four elements?
The set {0, 1, 3, 4} is not good, so n = 5.



CHAPTER 7. NUMBER THEORY 243

Comment. If we define n as above, but with three replaced everywhere by four,
the problem becomes more difficult. If a set has thirteen or more elements, then
some remainder occurs at least four times, so n ≤ 13. But finding n exactly takes
a longer argument.

More generally, we can call a set m-good iff there are m numbers in the set
whose sum is divisible by m. It turns out that every set of 2m − 1 numbers is
m-good, but some sets of 2m − 2 elements are not m-good. We do not know a
simple proof.

VII-43. Let P (x) = (x − 1)(x − 2)(x − 3) · · · (x − 19). When we multiply
this out, the result has shape a0x19 + a1x18 + · · ·+ a19. How many of the ai
are odd?

Solution. We could actually multiply, but that sounds like hard work.
Let Q(x) be any polynomial with integer coefficients, and look at (x+ e)Q(x),

where e is even. The coefficients of eQ(x) are all even. So a coefficient of xQ(x) +
eQ(x) is odd iff the corresponding coefficient of xQ(x) is odd. Thus (x + e)Q(x)
has just as many odd coefficients as xQ(x), which in turn has just as many odd
coefficients as Q(x).

If we use the above idea repeatedly, we see that (x − 1)(x − 2) · · · (x − 19) has
the same number of odd coefficients as (x − 1)(x − 3)(x − 5) · · · (x − 19). We can
do better. Note that x− 3 = (x− 1)− 2, x− 5 = (x− 1)− 4, and so on. It follows
that P (x) and (x− 1)10 have the same number of odd coefficients.

By the Binomial Theorem, the coefficient of xk in (x− 1)10 is (apart from sign,
which we don’t care about)

(

10
k

)

, that is, (10!)/(k!)(10 − k)!. There is symmetry
about k = 5, so calculation is short. There are 4 odd coefficients.

Another way: To find the number of odd coefficients of (x− 1)10, or of much larger
powers of x − 1, use the following idea. Replace five of the x − 1 terms by x + 1.
That doesn’t change the parity of the coefficients. So we want the number of odd
coefficients of (x2 − 1)5, that is, of (x2 − 1)(x2 − 1)4. Replace two of the x2 − 1
terms by x2 + 1. The parity of the coefficients does not change, so we want the
number of odd coefficients of (x2 − 1)(x4 − 1)2, which is the same as the number of
odd coefficients of (x2 − 1)(x8 − 1). Finally, we calculate! The answer is 4.

Comment. The idea of the second method generalizes. We can use it to show that
the number of odd coefficients in the expansion of (x − 1)n is simply the number
of 1’s in the binary expansion of n. For example, the binary expansion of 119 is
1110111, and exactly 6 of the numbers

(

119
k

)

are odd.

VII-44. Let b and c be odd integers. Show that x2 +2bx+2c = 0 does not
have integer solutions.

Solution. Let r be one of the roots. We show that r can’t be an integer by showing
that r can’t be odd and r can’t be even.

If r were odd, then since the sum of the roots is −2b, the other root would be
an odd integer. Then the product of the roots would be odd. But this product is
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the even number 2c. We have reached a contradiction, and conclude that r can’t
be odd.

If r were even, then since the sum of the roots is −2b, the other root would be
an even integer. Then the product of the roots would be divisible by 4. But this
product is 2c, twice an odd number, so it is not divisible by 4. So again we have
reached a contradiction, and conclude that r can’t be even.

Another way: The roots of our polynomial are −b ±
√
b2 − 2c. To show that the

roots are not integers, we show that b2 − 2c can’t be a perfect square.
Note that b2 is the square of an odd number. The square of the odd number

2k + 1 is 4k2 + 4k + 1, and so is of the form 4x + 1 for some integer x. Another
way of putting it is that when we divide the square of an odd number by 4, the
remainder must be equal to 1.

Also, c is odd, say c = 2u + 1. Then 2c = 4u + 2—equivalently, 2c leaves a
remainder of 2 when we divide it by 4. Thus b2 − 2c is of the form 4n + 3, and
therefore can’t be a perfect square.

Comment. The square of 2k + 1 is 4(k2 + k) + 1. But k2 + k is always even, so
actually the square of an odd integer has shape 8n + 1. As an illustration, we
can tell instantly that 1234567837 isn’t a perfect square: that number is 37 more
than a multiple of 8, so it is of the shape 8n + 5. A few other facts of this type
are occasionally useful in contests. For example, any perfect square which is not
divisible by 3 is of the shape 3n+ 1, and any perfect square which is not divisible
by 5 is of the form 5n± 1.

VII-45. Find an integer n such that 5n + 12 and 8n + 11 have a common
divisor greater than 1.

Solution. We can find such an n by trying 0, 1, 2, and so on until we bump into
something that works. But maybe there is no such n, the poser of the problem
made a mistake, and we will calculate forever. We need an idea.

Suppose that d divides 5n+12 and 8n+11. Then d divides a(5n+12)−b(8n+11)
for any integers a and b. To make things look nice, take a = 8 and b = 5. So d
divides 41. Since 41 is prime, if d > 1, then d must be 41.

We are looking for an integer n such that 41 divides 5n+12. Let 5n+12 = 41q.
We want 41q − 12 to be divisible by 5. The smallest positive q that works is 2. So
if n = 14, then 5n+ 12 is divisible by 41.

If n = 14, then 8n + 11 is also divisible by 41. We can show this by simply
dividing, or else note that since 8(5n+12)−5(8n+11) = 41, and 41 divides 5n+12,
it follows that 41 must divide 8n+ 11.

VII-46. Find all non-negative integers x, y such that 5x+ 7y = 200.

Solution. Let (x, y) be a solution. Since 5 divides 200 and 5 divides 5x, it follows
that 5 must divide 7y, and therefore 5 must divide y. Let y = 5u. Substitute and
simplify. We get x + 7u = 40. Note that u can be any of 0, 1, 2, 3, 4, or 5. The
corresponding x are 40, 33, 26, 19, 12, and 5.
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Another way: One solution is easy to pick out: x = 40, y = 0. Shrink x by an
amount a, and compensate by increasing y by b. Then 5x+7y changes by 5a− 7b.
We want this change to be 0. So 5a = 7b, and therefore a = 7t for some t, and
b = 5t. Thus the general solution of our equation in integers is x = 40− 7t, y = 5t,
where t is any integer. For non-negative solutions, we need 0 ≤ t ≤ 5.

Comment. Many “word problems” come down to finding all non-negative integer
solutions of ax+ by = c, where a, b, and c are positive integers. A generic example
looks like this: “Mangoes cost 49 cents each, and papayas $1.19. I bought some of
each and paid $11.83. How many of each did I buy?” This sort of problem can be
solved by an efficient systematic procedure like the Extended Euclidean Algorithm
or an inefficient systematic procedure (try everything) or something in between.
Sometimes we can exploit special properties of the numbers (49 and 119 are both
divisible by 7) to shorten the calculation.

VII-47. When we divide 5500, 6070, and 6469 by the positive integer m,
the remainders are all equal. Find all possible values of m.

Solution. The remainders are equal if and only if m divides both 6070− 5500 and
6469−6070. So we want m to divide 570 and 99. The numbers are small, so we can
identify m without much trouble. Note that 399 = 3 · 7 · 19, while 570 = 2 · 3 · 5 · 19.
Thus the largest integer that divides both is 3 · 19, and the values of m are the
positive divisors of 57, namely 1, 3, 19, and 57.

Comment. If the numbers were much larger, factorization might take impractically
much time. Here is an idea that works even for numbers much larger than the
ones we are dealing with. The common divisors of 570 and 399 are the same as
the common divisors of 399 and 570 − 1 · 399, that is, of 399 and 171. And the
common divisors of 399 and 171 are the same as the common divisors of 171 and
399 − 2 · 171, that is, of 171 and 57. Finally, the common divisors of 171 and 57
are the same as the common divisors of 57 and 171 − 3 · 57, that is, of 57 and 0.
And the greatest common divisor of 57 and 0 is obviously 57. This procedure for
finding greatest common divisors is called the Euclidean Algorithm. It is of great
theoretical and practical importance.

VII-48. A child brought some pennies to the bank, one-third as many 5-cent
coins as pennies, one-third as many dimes as 5-cent coins, and somewhere
between 75 and 100 quarters. In exchange, she received a $100 bill. How
many quarters did she bring?

Solution. Let d be the number of dimes and q the number of quarters. Then there
are 3d five-cent pieces and 9d pennies. Thus

9d+ 15d+ 10d+ 25q = 100 · 100,

which simplifies to 34d+ 25q = 10000. Since 25 divides two of the terms, it must
divide d; Let d = 25x. Thus 34x + q = 400, so 400 − q must be a multiple of 34.
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Now look for multiples of 34 between 400− 100 and 400− 75. There is exactly one,
namely 306, so q = 94.

VII-49. Find the remainder when 2524 is divided by 144.

Solution. Imagine that the division has been done. Then 2524 = 144q+ r, where q
is the quotient and r the remainder. Since 16 divides both 2524 and 144, it must
divide r. Let r = 16s; then 2520 = 9q + s. It remains to compute the remainder s
when 2520 is divided by 9.

Find the remainders when successive powers of 2, starting with 20, are divided
by 9. The first few are 1, 2, 4, 8, 7, 5, 1, 2, 4. We assume that the apparent cycling
with period 6 is real. Then the remainder when 2n is divided by 9 is 1 whenever n
is a multiple of 6. The largest multiple of 6 up to 520 is 516. Four more steps get
us to 520, so the remainder s is 7. It follows that r = 16 · 7 = 112.

To prove that there is indeed cycling, we show that the remainder when 2n+6 is
divided by 9 is equal to the remainder when 2n is divided by 9, that bumping the
exponent up by 6 makes no difference. All we need to do is to show that 9 divides
2n+6 − 2n. That’s easy, for 2n+6 − 2n = 2n(26 − 1) = 63 · 2n.

Comments. 1. Let a and m be integers, with m positive. Look at the remainders
when a0, a1, a2, and so on are divided by m. There are at most m possible values
of the remainder, so by the time we reach am we must have seen one remainder at
least twice. Suppose that as and at give the same remainder, where s < t.

We show that the “next” remainders are equal. We know that m divides at−as,
and want to show that m divides at+1 − as+1. This is easy, for

at+1 − as+1 = a(at − as).

Since the remainders for as+1 and at+1 are equal, the remainders for as+2 and
at+2 are equal, and so on. Thus there is cycling from as on.

2. We show how to compute directly the remainder when a524 is divided by 144,
for any integer a. Find the remainder when a2 is divided by 144. Use that to find
the remainder when a4 is divided by 144, use that to find the remainder when a8

is divided by 144, and so on up to a512. Then use the fact that a524 = a512 · a8 · a4.
Call the process of multiplying two numbers and finding their remainder on

division by 144 a step. Then we find our remainder in 11 steps. That’s far better
than the 519 steps we would take if we multiplied by a, then by a again, and so on.

In the real world of public key cryptography, computers use essentially the same
idea with enormously large exponents. The method is called the Binary Method
for Exponentiation. It has many uses. For other examples, see VII-7 and IX-28.

VII-50. For what integers n is n2 + n+ 17 a perfect square?

Solution. When we work with quadratics, it is often useful to complete the square.
But in number-theoretic questions, it is wise to avoid fractions. So first we multiply
by 4. Note that

n2 + n+ 17 = y2 iff 4n2 + 4n+ 68 = 4y2 iff (2n+ 1)2 + 67 = 4y2.
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We need to find integers y, n such that 67 = (2y)2 − (2n + 1)2. Let 2y = u,
2n + 1 = v. We need to have (u − v)(u + v) = 67, with u even (and v odd, but
that’s automatic if u is even).

Luckily, 67 has very few factors. There are four possibilities: u − v = 1,
u + v = 67; u − v = −1, u + v = −67; u − v = 67, u + v = 1; and u − v = −67,
u+ v = −1. (Actually, the last two must give the same n and y as the first two.)

For each possibility, find v, and then n. We get n = 16 or n = −17.

Comment. “Completing the square” is a simple but powerful idea which is under-
used in high school, while factoring by inspection is visited repeatedly, from grade 9
all the way to grade 12. Factoring expressions like a2 − b2 and a3 − b3 is indeed
important, but factoring by inspection expressions like x2 − 6x− 91 has almost no
uses in real mathematics.

VII-51. Can a triangle with sides 13, 14, 15 be split into two right-angled
triangles with integer sides?

Solution. Let the corners of the original triangle be A, B, and C, with AB = 13,
AC = 15, and BC = 14. If the task can be done, then one side will be cut into
two parts, and the other two will not. The right angles are created in the process
of splitting, and each uncut side becomes a hypotenuse.

So we ask: Which of 132, 142, 152 can be expressed as the sum of two non-zero
squares? The numbers are small, so we can find the answer by inspection: 132 and
152 can be, and 142 cannot. Thus if the splitting can be done, we have to split the
side of length 14. Drop a perpendicular from A to the point P on BC.

Let h = AP , x = BP and y = PC. By the Pythagorean Theorem, we want

h2 = 132 − x2 = 152 − y2 and y + x = 14.

So we need y2 − x2 = 56. If we divide the left hand side by y+ x, and the right by
14, we find that y − x = 4, and therefore x = 5, y = 9, and h = 12, so indeed the
two triangles have integer sides.

VII-52. Find all eight-digit numbers that are divisible by 7, 11, and 13,
and whose first four digits are 1234. Hint: Find 7 · 11 · 13.

Solution. The number n is divisible by 7, 11, and 13 if and only if n is divisible by
1001.

We find the first multiple of 1001 which is greater than 12340000. That can be
done by hand or by calculator. With the calculator, divide 12340000 by 1001; the
quotient is about 12327.67. Multiply 1001 by 12328; the result is 12340328.

Now keep adding 1001 until the numbers get too big. There are 10 numbers
that work. They have decimal expansion 1234 followed by 0328, 1329, . . . , 8336,
and 9337.

VII-53. The positive integers x, y, z are in arithmetic progression. Their
product is 20 times their sum, and x < z. What can we say about z?
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Solution. Let the numbers be a − d, a, and a + d. Their sum is 3a, their product
is a(a− d)(a+ d), so 60a = a(a− d)(a+ d). Since a (= 0, we may divide both sides
by a, so (a− d)(a+ d) = 60.

The sum of a − d and a + d is the even number 2a, so a − d and a + d are
both odd (impossible, their product is 60) or both even. The only possibilities are
z = a+ d = 10 and z = 30, for z = 2 and z = 6 yield negative x.

Comment. We could work directly with x, y, and z. The resulting solution is
equally short, and in some sense simpler. But the symmetrization x = a−d, y = a,
z = a+ d should probably be almost a reflex action.

VII-54. How many different ordered pairs (x, y) of positive integers are
there such that the greatest common divisor of x and y is 24 and their least
common multiple is 14400?

Solution. Let (x, y) be such a pair, and let x = 24a and y = 24b. Then a and b
have no factor greater than 1 in common, and therefore the least common multiple
of x and y is 24ab. But this is 14400, so ab = 600.

Conversely, suppose that a and b have no factor greater than 1 in common and
ab = 600. If we set x = 24a and y = 24b, we obtain a solution to our problem.
So we need to count the number of pairs (a, b) such that a and b have no common
factor greater than 1 and ab = 600.

Note that 600 = 23 · 3 · 52. First decide whether a gets the 2’s, yes or no. If
the answer is no, give the 2’s to b. (Since a and b have no factor greater than 1 in
common, either a gets all the 2’s or b does.)

Then decide whether a gets the 3, yes or no, then whether a gets the 5’s. At
every prime, there are two choices, so the total number of choices is 23.

VII-55. Find all integers n such that (31.5)n + (32.5)n is an integer.

Solution. Let x = (31.5)n + (32.5)n. If n ≤ −1, then 0 < x < 1, so x can’t be an
integer. If n = 0, then x is an integer. Now look at positive n.

Note that x = (63n + 65n)/2n. If n is even, then 63n and 65n are both perfect
squares. The square of an odd integer 2t + 1 is 4(t2 + t) + 1, one more than a
multiple of 4. Thus 63n+65n is of the form 4k+2, and in particular is not divisible
by 4. But 2n is divisible by 4 for n ≥ 2, so if n is even and positive then x is not
an integer.

Let n be positive and odd, let a = 63 and b = 65. Then

an + bn = (a+ b)(an−1 − an−2b+ · · ·− abn−2 + bn−1).

In particular, 63n + 65n is divisible by a + b, that is, by 128. The second term in
the product above is a sum of an odd number of odd terms, so it is odd. Thus
x = (128/2n)q, where q is odd. So if n is positive and odd, then x is an integer
precisely if 2n divides 128, that is, when n = 1, 3, 5, or 7.
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Comment. Calculator exploration can be helpful in number-theoretic problems, but
it can also mislead. After some experimentation, we might well have conjectured
that (31.5)n + (32.5)n is an integer whenever n is odd and positive. The first
counterexample, namely n = 9, involves numbers beyond the reach of standard
calculators.

VII-56. Define the sequence (an) by

a1 = 2 and an+1 = a2n − an + 1 when n ≥ 1.

(a) Suppose that d > 1 and d divides an. Find the remainder when an+1

is divided by d. (b) Suppose that the remainder when an is divided by d is
1. Find the remainder when an+1 is divided by d. (c) Show that no integer
greater than 1 divides two different terms of the sequence. (d) Conclude
that there are infinitely many primes.

Solution. (a) If d divides an, then d divides a2n − an, and therefore the remainder
when we divide a2n − an + 1 by d is 1.

(b) If the remainder when we divide an by d is 1, then an = qd+1 for some q. But
then

an+1 = a2n − an + 1 = q2d2 + qd+ 1,

and therefore an+1 leaves a remainder of 1 on division by d.

(c) Suppose that an integer d greater than 1 divides some term(s) of the sequence.
Let ak be the first term divisible by d. Then by part (a), ak+1 leaves a remainder
of 1 on division by d. But then by part (b), all subsequent terms of the sequence
also leave a remainder of 1, and in particular are not divisible by d. So no integer
greater than 1 can divide more than one term of the sequence.

(d) Finally, the payoff! The sequence is growing, indeed growing very rapidly. For
each term an of the sequence, there is at least one prime pn that divides an. But
no integer greater than 1 can divide two distinct terms, so all the pn are different,
and therefore there are infinitely many primes.

VII-57. Find all right-angled triangles with integer sides such that one of
the legs—not the hypotenuse—is 100.

Solution. We need to find positive integers y and z such that 1002 + y2 = z2, that
is, such that (z− y)(z+ y) = 1002. In particular, z− y must be a divisor d of 1002.
Then z + y = 1002/d. Since z − y < z + y, we conclude that d < 100.

Note that z = [(z − y) + (z + y)]/2, so d and 1002/d must be of the same
parity—both even or both odd—and it is clear they can’t be both odd. Conversely,
suppose that d is a positive divisor of 1002 with d < 100, and that d and 1002/d
have the same parity. Then by setting z = (1002/d+ d)/2 and y = (1002/d− d)/2
we obtain a solution.

Since 1002 = 24 · 54, the possibilities for d are d = 2, 4, 8, 10, 20, 40, and 50.
The rest is straightforward. For example, d = 40 yields z = 145 and y = 105.
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VII-58. How many integers x are there, with 0 ≤ x < 300, such that 2x−x2

is a multiple of 5?

Solution. Examine first the remainder when 2x is divided by 5. For x = 0, 1, 2,
3 the remainders are 1, 2, 4, and 3. Then at x = 4 the remainder is 1, and the
pattern 1, 2, 4, 3 repeats. The remainder when x2 is divided by 5 exhibits the
pattern 0, 1, 4, 4, 1, and this pattern repeats. The cycle length is 4 in the first
case, 5 in the second, so if x is stepped up by 20, both patterns repeat. (For a
detailed justification of why we can be confident that the patterns continue, see the
comments after VII-49.) For 0 ≤ x ≤ 19 we get

1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3

0 1 4 4 1 0 1 4 4 1 0 1 4 4 1 0 1 4 4 1

There are matches at x = 2, 4, 16, and 18, so there are 4 matches in each cycle
of 20. There are 15 such cycles from 0 to 299, so 2x − x2 is a multiple of 5 for 60
integers in our interval.

VII-59. The number 1/n, where n is a positive integer, is called a unit

fraction. Express 1 as a sum of seven different unit fractions. Hint: The
fact that 1 = 1

2 +
1
3 +

1
6 may be useful, or the more general 1

n = 1
n+1 +

1
n(n+1) .

Solution. There are several solutions. We have 1 = 1/2 + 1/3 + 1/6. But then

1

6
=

1

6

(

1

2
+

1

3
+

1

6

)

=
1

12
+

1

18
+

1

36
.

Using the same idea, we find that 1/36 = 1/72+ 1/108+ 1/216, and therefore 1 is
the sum of unit fractions with denominators 2, 3, 12, 18, 72, 108, and 216.

Or start with 1 = 1/2+1/2. Let n = 2. We get 1/2 = 1/3+1/6. Now let n = 3.
We get 1/3 = 1/4+1/12, which gives the representation 1 = 1/2+1/4+1/6+1/12.
Take n = 4. We can replace 1/4 by 1/5 + 1/20. Take n = 6, and replace 1/6 by
1/7 + 1/42. Finally, replace 1/7 by 1/8 + 1/56.

VII-60. You want to tile a 15 foot by 15 foot room with square tiles, without
cutting any tile. That can be done with the blue tiles. It can also be done
with the red tiles, but that requires 72 more tiles than if the blue tiles are
used. The red tiles are less than 1 foot in width. How big are the blue tiles?

Solution. Suppose that r red tiles laid end to end measure 15 feet. Then we need
r2 red tiles for the room. Similarly, if b blue tiles measure 15 feet, then we need b2

blue tiles. We know that r2 − b2 = 72.
Thus r + b and r − b are positive integers whose product is 72. Could we have

r + b = 72, r − b = 1? No, for then r = (72 + 1)/2, contradicting the fact that
r is an integer. Similar reasoning shows that r + b and r − b must both be even.



CHAPTER 7. NUMBER THEORY 251

The possibilities are (i) r + b = 36, r − b = 2; (ii) r + b = 18, r − b = 4; and (iii)
r + b = 12, r − b = 6.

Possibilities (ii) and (iii) are ruled out by the fact that red tiles are less than
1 foot in size. For example, if r + b = 18 and r − b = 4, then r = 11, giving red
tile size 15/11. Only possibility (i) remains, so b = 17, and the blue tiles have side
length 15/17.

VII-61. The tens digit of a perfect square is 7. What can the units digit
be?

Solution. A little doodling soon leads to the conjecture that 6 is the only answer.
Let’s prove it. We are interested in the last two digits of the perfect square a2.
Only the last two digits of a matter. For let a = 100k+ d, where 0 ≤ d ≤ 99. Then
a2 = 100(100k2 + 2kd) + d2, and therefore the last two digits of a2 and d2 are the
same. So to answer our question, we only need to square the numbers from 0 to
99.

Before doing that, let’s think some more. We only need to square the numbers
from 0 to 49, because if d is the remainder when a is divided by 50, then a = 50q+d
for some quotient q. But then a2 = 100(25q2 + qd) + d2, and therefore the last two
digits of a2 and d2 agree.

Before squaring the numbers from 0 to 49, let’s think some more. The numbers
a from 25 to 49 are equal to 50 − b for some b between 1 and 25. Then a2 =
100(25− b)+ b2, so a2 and b2 have the same last digit. Thus we need only examine
the squares from 02 to 252. Now we can compute. Only the square of 24 has next
to last digit equal to 7, so the only possible last digit is 6. In fact the units digit is
6 if and only if the tens digit is odd.

Comment. The solution shows that we shouldn’t take the calculator out of its case
too early. But we did! Let u be the units digit of a. Then the units digits of a2

and u2 are the same, and a− u is a multiple of 10.
Now compare tens digits. Since a2 − u2 = (a+ u)(a− u), and a+ u is even, it

follows that a2 − u2 is divisible by 20. Thus the tens digit of a2 is odd iff the tens
digit of u2 is odd. The tens digit of u2 is odd when u = 4 and when u = 6. In
either case, the units digit of u2 is 6.

The right balance between thinking and computation is not always obvious. As
the cost of computation decreases, there is an inevitable tilt away from thinking.

VII-62. Show that if one entry in an infinite arithmetic progression is a
perfect cube, then infinitely many entries are perfect cubes.

Solution. The result is obvious if all the entries are the same. If they are not, let
d be the common difference. By multiplying if necessary all entries by −1, we can
ensure that d is positive. Let x3 be a perfect cube in the progression. We show
there is a positive t such that (x + t)3 is in the progression.

We need to make sure that d divides the difference (x+ t)3−x3. This difference
is equal to 3x2t+ 3xt2 + t3, so we can for example take t = d.
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VII-63. Let N = 501 · 502 · 503 · · · 999 · 1000. Find the largest power of 2
that divides N .

Solution. We could simply count. There are 250 odd numbers in our list, and they
supply no 2’s. So we only need to look at the remaining 250 numbers! It’s not as
bad as it sounds. For example, 502 only has one 2. The same is true of 506, 510,
and so on up to 998. So 125 numbers each supply one 2. We need to examine the
remaining 125 numbers. We could continue, learning a few shortcut tricks along the
way, and after a while find the answer, which turns out to be 2500. The simplicity
of the answer is a sign that we should look for

Another way: Let N = (n+ 1)(n+ 2) · · · (2n). We find the largest power of 2 that
divides N . First calculate the number of 2’s “in” N for small n.

Start with n = 1. The highest power of 2 that divides 2 is 21. Let n = 2. The
highest power of 2 that divides 3 ·4 is 22. The highest power of 2 that divides 4 ·5 ·6
is 23. For 5 · 6 · 7 · 8, it is 24. Interesting!

We have N = (2n)!/n!. In (2n)!, separate the even and the odd numbers. We
get

(2n)! = [1 · 3 · 5 · · · · · (2n− 1)] [2 · 4 · 6 · · · · · (2n)] .

But 2 · 4 · 6 · · · · · (2n) = (2n)(1 · 2 · 3 · · · · · n), so

N =
(2n)!

n!
= (2n)(1 · 3 · 5 · · · · · (2n− 1))

and therefore 2n is the largest power of 2 that divides N .

Another way: Suppose that with hard work we have calculated the highest power
of 2 that divides say 42 ·43 ·44 · · ··82. What happens when we go to 43 ·44 ·45 · · ·84?
We “lose” the 2’s in 42, and “gain” the 2’s in 84, for a net gain of one 2.

In general, every time that we increase n by 1, we lose the 2’s in n+1 and gain
the 2’s in 2n+2, for a net gain of one 2. Since when n = 1 there is one 2, it follows
that there are n 2’s in (n+ 1) · · · (2n).

Comments. 1. In the comments that follow VII-36, it is shown that the highest
power of the prime p that divides m! is pe, where

e =

⌊

m

p

⌋

+

⌊

m

p2

⌋

+

⌊

m

p3

⌋

+ · · · .

The number of 2’s in (2n)!/n! is the number of 2’s in (2n)! minus the number of
2’s in n!. In the formula above, let p = 2. Put m = 2n, and subtract the result
of putting m = n. Almost everything cancels. All that we are left with is )2n/2*,
which is n.

2. In the third solution, we avoided using the word “induction,” but in fact gave
a full induction argument. This is a quite clean instance of induction. Students
sometimes find the induction proof of a formula like the one for 1 + 2 + · · · + n
confusing. And indeed induction is probably the worst way of proving that this
sum is n(n+ 1)/2.
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VII-64. Let x = 997756 − 300720
√
11. Find integers a and b such that

x = (a− b
√
11)2.

Solution. Expand (a− b
√
11)2. We conclude that if a and b are integers then

a2 + 11b2 = 997756 and 2ab = 300720.

Substitute 300720/2a for b in the first equation and simplify. We get

a4 − 997756a2 + 11 · 1503602 = 0.

This is a quadratic in a2. The numbers are large but not impossibly large—though
most calculators display at most 10 digits, they keep (barely) enough guard digits
to do the job. The discriminant turns out to be 275562. Only one of the roots of
the quadratic is a perfect square, namely the square of 716. So a = ±716. Finally,
from 2ab = 300720 we conclude that b = ±105.

Another way: We make greater use of the calculator. Let y = (a + b
√
11)2. Note

that y = 997756+ 300720
√
11.

Using the calculator, we find that
√
x is about 19.508794 and

√
y is about

1412.4912, and therefore
√
x +

√
y is very near to 1432. This sum ought to be 2a,

so we conclude that a is probably 716. We know that a− b
√
11 is about 19.508794.

Put a = 716 and solve for b. To calculator accuracy, b = 105. We should now check
that these values of a and b work exactly—there might not be integers a and b that
satisfy our condition. They do.

VII-65. A high school has somewhere between 200 and 400 lockers, num-
bered 1, 2, 3, and so on. The sum of the locker numbers greater than mine
is equal to the sum of the locker numbers less than mine. What is my locker
number?

Solution. If we knew the number of lockers, we could quickly zoom in on the answer.
But we don’t, and examining the various possibilities from 200 to 400 would take
a long time.

Let n be my locker number, and let the number of lockers be N . The locker
numbers less than mine are 1, 2, . . . , n− 1, and they add up to (n− 1)(n)/2. The
locker numbers greater than mine add up to N(N + 1)/2 − n(n + 1)/2. The two
sums are equal. After simplifying, we obtain the equation 2n2 = N2 +N .

For N = 200 to 400, we could calculate N2 + N , divide the result by 2, and
take the square root of the result, looking for an integer answer. It is not hard to
write a program to do this.

Instead, note that exactly one of N or N + 1 is even. Suppose it is N . Then
n2 = (N/2)(N + 1). But N/2 and N + 1 have no common divisor greater than 1,
and their product is a perfect square, so each is a perfect square. Let N/2 = y2 and
N + 1 = x2. We reach the equation x2 − 2y2 = 1. Similarly, if N + 1 is even, then
(N + 1)/2 = y2 and N = x2 for some integers x and y, and we get x2 − 2y2 = −1.
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Since N = 2y2 or N = 2y2 − 1, and N lies between 200 and 400, the number y
must be between 10 and 14. It is easy to examine 2y2 ± 1 for these five values of
y, looking for a perfect square. We get a “hit” at y = 12 and nowhere else. That
gives N = 288 and n = 204.

Comment. Equations of the type x2 − ay2 = ±1, where a is a positive integer
which is not a perfect square, are called Pell equations, after an English amateur
mathematician who had little or perhaps nothing to do with them. Usually we are
interested only in integer solutions.

The special case a = 2 occurs in early Greek mathematics, and other cases
were studied by Diophantus. In India, there were contributions by among others
Brahmagupta in the seventh century, Mahāv̄ıra in the ninth, and most importantly
Bhāskara in the twelfth century.

In Europe, they come up seriously again only in the seventeenth century with
the work of Fermat and Brouncker. A beautiful complete theory was developed by
Lagrange a century later.

VII-66. Express 3/7 as a sum of different fractions of type 1/n, where n is
an integer. The following identity may be useful:

1

k
=

1

k + 1
+

1

k(k + 1)
.

Solution. The given identity is easy to verify. So 1/7 = 1/8+1/56, and 1/8+1/56 =
1/9 + 1/72 + 1/57 + 1/3192. It follows that

3

7
=

1

7
+

1

7
+

1

7
=

1

7
+

1

8
+

1

56
+

1

9
+

1

72
+

1

57
+

1

3192
.

Comment. It may be interesting to look for simpler solutions. For instance, 3/7 =
1/3 + 1/14 + 1/42. We can also use the so-called greedy algorithm, in which we
subtract repeatedly the largest 1/n that is less than or equal to our current number.
So 3/7−1/3 = 2/21, 2/21−1/11 = 1/231, and therefore 3/7 = 1/3+1/11+1/231.

Fractions of type 1/n are called unit fractions, or Egyptian fractions, because the
ancient Egyptians didn’t have symbols for other fractions, except for 2/3, and for
some peculiar reason expressed other fractions by summing distinct unit fractions.
There are many unsolved problems about unit fractions. For example, does the
equation 4/n = 1/x+1/y+1/z have a solution in positive integers x, y, z for every
n > 1? It does for n < 108.

VII-67. Find the number of solutions of 1
x + 1

y = 1
60 in positive integers.
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Solution. As long as we remember that x and y can’t be 0, we can rewrite the
equation as xy− 160x− 160y = 0, or equivalently (x− 160)(y− 160) = 1602. Note
that x and y must each be larger than 160, for if one or both is less than or equal
to 160, then 1/x + 1/y > 1/160. Let u = x − 160 and v = y − 160. Then u and
v are positive, and uv = 1602. Conversely, if u is a positive divisor of 1602, then
x = 160 + u, y = 160 + 1602/u is a solution of the original equation.

It follows that there are just as many solutions as there are positive divisors of
1602. We could count these divisors by making a list, but there is a better way. We
have 1602 = 210 · 52. To make a positive divisor u of 1602, we need to decide how
many 2’s u will have (0, or 1, or 2, . . . , or 10, eleven choices in all). For every such
choice, we must decide how many 5’s u will have (three choices in all). So there are
11 · 3 ways of making u, and therefore our equation has 33 solutions.

Another way: Start from xy − 160x− 160y = 0 and solve for y. We get

y =
160x

x− 160
= 160 +

1602

x− 160
.

Integer solutions are obtained by making sure that x − 160 divides 1602. The rest
of the analysis goes as before.

Comment. The strategy we used to count the number of positive divisors of 1602

can be used to compute quickly the number of positive divisors of any integer
N once we know the prime factorization of N . See VII-38 for a more leisurely
discussion.

VII-68. Find the solutions of xy = x2+97x+3y− 213 in positive integers.

Solution. The equation is linear in y. Solve for y. We get

y =
x2 + 97x− 213

x− 3
= x+ 100 +

87

x− 3
.

(the last expression was obtained using ordinary polynomial division). It follows
that x − 3 must divide 87 exactly. Luckily, 87 doesn’t have many integer divisors:
they are ±1, ±3, ±29, and ±87. Since x is positive, we get the possibilities x = 4,
2, 6, 32, 90. Note that x = 2 yields a positive y, and the others obviously do.

VII-69. Find all integers a such that 1 + a+ a2 + a3 is a power of 2.

Solution. It is easy to see that a = 0 and a = 1 work. We will show that nothing
else does. Note that

1 + a+ a2 + a3 = 1 + a+ a2(1 + a) = (1 + a)(1 + a2).

In order for the product of 1 + a and 1 + a2 to be a power of 2, both 1 + a and
1 + a2 must be powers of 2.

When is a2 + 1 a power of 2? Except when a = 0, a2 + 1 must be even, so a
must be odd. Calculate a2 + 1 for the first few positive odd a to get some insight.
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We get 2, 10, 26, 50, 82. Except for the first entry, these are certainly not powers
of 2, in fact they each only have one 2 in them.

That’s true in general. Let a be odd, say a = 2k+1. Then a2+1 = 4k2+4k+2 =
2(2k2 + 2k + 1). Since 2k2 + 2k + 1 is always odd, 4 can’t divide a2 + 1. So the
only way a2 + 1 can be a power of 2 for odd a is if a = ±1. But a = −1 is not a
solution of the original problem, since in that case a+ 1 is not a power of 2.

VII-70. If eggs in a (large) basket are taken out 2, 3, 4, 5, or 6 at a time,
there are 1, 2, 3, 4, and 5 eggs left over respectively. If they are taken out
7 at a time, there are no eggs left over. Find the least number of eggs that
can be in the basket.

Solution. If we use other numbers, the problem can be a lot harder. But the first
five conditions collapse into one. If N is the number of eggs, then N +1 is divisible
by 2, 3, 4, 5, and 6. That’s equivalent to asking that N + 1 be divisible by 60.

Thus N + 1 = 60k for some positive integer k. We are told that N is divisible
by 7, that is, 60k − 1 is divisible by 7. It’s sensible now just to try various k.
But first we make a move that could be useful with uglier numbers. Note that
60k − 1 = 56k+ (4k − 1), so 7 divides 60k − 1 if and only if 7 divides 4k − 1. And
it is easy to see that 2 is the smallest positive k for which 7 divides 4k − 1. Thus
N = 119.

Comment. This problem, with changes of wording but unchanged numbers, is an-
cient. It occurs in the work of Bhāskara I (sixth century), al-Haitham (eleventh
century), Fibonacci (thirteenth century), and has been a staple of puzzle collections
ever since. The main result needed to deal with generalizations of this problem is
called the Chinese Remainder Theorem, because questions like this were first stud-
ied in China. There is also a sustained history of interest in such problems in India,
starting with Āryabhata (sixth century) and Brahmagupta (seventh century).

VII-71. Call an angle regular if it is 360◦/n for some integer n. Find all
triangles whose angles are regular.

Solution. Let the angles be 360/x, 360/y, and 360/z, where x, y, and z are integers.
From the fact that the angles of a triangle add up to 180◦, we obtain, after dividing
by 360, the equation

1

x
+

1

y
+

1

z
=

1

2
.

Without loss of generality we may take x ≤ y ≤ z. Note that 3 ≤ x ≤ 6, for if
x ≤ 2 then 1/x+ 1/y + 1/z > 1/2, while if x > 6, then 1/x+ 1/y + 1/z ≤ 3/7.

If x = 6 then, because x ≤ y ≤ z, we must have x = y = z = 6, so there is
a single shape, the equilateral triangle, which we list as (60, 60, 60). If x = 5, we
are trying to solve the equation 1/y + 1/z = 1/2 − 1/5. Now do a trial and error
search. Could y = 5? Yes; then z = 10, and we get (72, 72, 36). Could y = 6? No,
then z is not an integer. Could y ≥ 7? No, for then 1/y + 1/z ≤ 2/7 < 3/10.
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If x = 4, we are looking at 1/y + 1/z = 1/4. Again a quick search would yield
the solutions, but for variety we take a more algebraic approach. The equation
simplifies to 4y + 4z = yz, which can be rewritten as (y − 4)(z − 4) = 16. Thus
each of y − 4 and z − 4 divides 16. Since 4 ≤ y ≤ z, we get y = 5, z = 20, giving
(90, 72, 18); y = 6, z = 12, giving (90, 60, 30); and y = 8, z = 8, giving (90, 45, 45).

If x = 3, we are looking at 1/y + 1/z = 1/6, or equivalently (y − 6)(z − 6) =
36. The possible values of y − 6 are 1, 2, 3, 4, and 6. This yields the shapes
(120, 360/7, 60/7), (120, 45, 15), (120, 40, 20), (120, 36, 24), and (120, 30, 30). So
altogether there are 10 different shapes.

Comment. All but one of the shapes probably can be found by unsystematic search,
but we are unlikely to just bump into (120, 360/7, 60/7). Sometimes a patient
organized breakdown into cases is the best way to solve a problem.



Chapter 8

Probability

Introduction

Probability and statistics are playing an increasing role in the curriculum.
Most of the material that senior high school students cover is of the “pre-
calculus” type in which there is seldom any question about what method to
apply. Probability has a greater apparent diversity of problems, and through
lack of practice it can seem more difficult than it is.

A majority of the problems are about simple gambling games, mostly
with coins and dice. The motivation for this is partly historical—the first
results of the seventeenth century founders of probability theory were about
dice games. Also, dice games are concrete, but give rise to a rich variety of
questions.

The two most interesting problems in the chapter are well-known. Prob-
lem VIII-18, about an interrupted game, was a matter of controversy at
the beginnings of mathematical probability. And VIII-34, which deals with
“non-transitive” dice, shows that it is possible to rationally prefer B over A,
and C over B, but A over C.

Problems and Solutions

VIII-1. There are 24 points on the periphery of a circle, 15◦ apart. Alfred
picks two of the points, say A and B, at random. Then Cecilia picks two
points C andD at random from the 22 points that remain. Alfred wins if the
line segment AB meets the line segment CD, and Cecelia wins otherwise.
Find the probability that Alfred wins.

Solution. There is less to the problem than meets the eye. Imagine that the picking

258
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has been done and let A be the first point chosen by Alfred. Let P , Q, and R be
the other three chosen points, listed counterclockwise from A. Then Alfred wins if
and only if B = Q, and this has probability 1/3. The number of points and their
spacing are irrelevant.

VIII-2. Two different numbers are chosen at random from the numbers 1,
2, 3, . . . , 100. Find the probability that their sum is even.

Solution. There are
(100

2

)

ways of choosing two numbers from our collection, and
all these ways are equally likely. The sum of the numbers is even if either (i) both
numbers are even or (ii) both numbers are odd. There are

(50
2

)

ways of choosing

two even numbers, and
(50
2

)

ways of choosing two odd numbers. The required
probability is therefore

(50
2

)

+
(50
2

)

(100
2

) .

Now we can compute. The probability is 49/99.
It is marginally easier to compute the number of ways that the sum can be odd,

for then one number must be even and the other odd, and there are 502 ways of
selecting such a pair of numbers.

Another way: Choose a number, then choose another. Whatever number we first
picked, there are 49 left that will produce an even sum, so the probability is 49/99.

VIII-3. (a) Ninety-nine fair coins are flipped. Eve wins if the number of
heads is even, and Odin wins if the number is odd. Find the probability
that Eve wins. (b) What about if 100 fair coins are flipped?

Solution. (a) Since 99 coins were tossed, the number of heads is even if and only
if the number of tails is odd. But by symmetry, the probability that the number
of tails is odd is the same as the probability that the number of heads is odd. So
the probability that Eve wins is the same as the probability that she loses, and
therefore each is 1/2.

Another way: The same argument can be reworded. Imagine that the tossing is
done onto a glass-topped coffee table. Suppose that Eve is looking down at the
table and sees an even number of heads. If instead she were lying under the table,
she would see an odd number of heads, so the two events are equally likely.

(b) The symmetry argument of part (a) breaks down, but calculation with 2 coins
or 4 coin suggests that the probability is still 1/2. Imagine that of the 100 coins,
one is gold and 99 are copper. Look first at the gold coin. If it shows tails,
the probability that there is an even number of heads among the copper coins,
and therefore among all the coins, is 1/2. And if it shows heads, then since with
probability 1/2 the number of heads among the copper coins is odd, it follows that
with probability 1/2 the number of heads among all the coins is even. Note that
the gold coin doesn’t even have to be fair as long as the copper coins are.
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Comment. It can be shown that if n fair coins are tossed, the probability that there
are exactly k heads is

(n
k

)

/2n. So the probability that the number of heads is even
is

1

2n

((

n

0

)

+

(

n

2

)

+

(

n

4

)

+ · · ·
)

.

Recall that by the Binomial Theorem

(1 + x)n =

(

n

0

)

+

(

n

1

)

x+

(

n

2

)

x2 + · · ·+
(

n

n− 1

)

xn−1 +

(

n

n

)

xn.

Put x = −1 in the above identity, and rearrange. We obtain
(

n

0

)

+

(

n

2

)

+

(

n

4

)

+ · · · =
(

n

1

)

+

(

n

3

)

+

(

n

5

)

+ · · · .

Thus an even number of heads and an odd number of heads are equally likely. Too
fancy, of course, but the general idea has many uses.

VIII-4. A box-like apartment building has a square base of side 30 meters.
Point P is chosen at random on the circle of radius 60 meters whose center is
the middle of the base of the building. Find, correct to two decimal places,
the probability that two walls of the building are visible from P .

Solution. First we compute the probability that we can only see the East wall.
That happens if P lies on the arc between A and B in Figure 8.1. The picture
shows that ∠AMB is twice the angle whose sine is 15/60. The calculator says that
∠AMB is about 28.955 degrees. Call this number x.

A

B

M
60 15

Figure 8.1: The Probability Two Walls are Visible

The probability that we can only see the East wall is x/360. By symmetry, the
probability that we can only see the North wall is also x/360, and so on. Thus the
probability that we can only see one wall is 4x/360, and therefore the probability
that we can see two walls is 1− 4x/360, approximately 0.68.

VIII-5. An integer n is chosen at random in the interval from 0 to 10k − 1.
Find the probability that the decimal expansion of n contains one or more
5’s.



CHAPTER 8. PROBABILITY 261

Solution. For uniformity of notation, make sure that any number in our interval
has exactly k digits by, if necessary, putting a padding of extra 0’s on the left of
the usual decimal representation. For example, if k = 5 then the number 123 is
denoted instead by 00123.

There are 10k integers in our interval. “At random” is ambiguous: we interpret
it to mean that all numbers in the interval are equally likely to be chosen.

We count the number of integers in the interval with no 5’s in their decimal
expansion. The first digit of such a number can be chosen in 9 ways—any digit but
5. For each such choice, there are 9 ways of choosing the second digit, so there are
92 ways of choosing the first two digits. We conclude after a while that there are
9k numbers with no 5’s.

Thus the probability that n has no 5’s is 9k/10k. It follows that the probability
pk that n has at least one 5 is given by pk = 1− (9/10)k.

Comment. As k gets large, (9/10)k approaches 0, and therefore pk approaches 1.
So in a sense “almost every” positive integer has a 5 in its decimal expansion. In a
similar way, we can show that for example almost every integer has the string 1066
as part of its decimal expansion.

VIII-6. Two circles have the same center, one has radius 1 and the other
has radius 2. Points P and Q are chosen independently and at random on
the boundary of the outer circle. Find the probability that the line PQ
passes through the inner circle.

Solution. By a rotation of a circle, any point on the circle can be carried to any
other point. Place P at the top of the circle of radius 2. The line PQ crosses the
small circle precisely if Q lies on the smaller arc that joins the points labelled A
and B in Figure 8.2.

A B

P

O

Figure 8.2: Two Circles

The probability that Q lies on arc AB is the ratio of ∠AOB to a full rotation.
The angle APO is easy to find, for its sine is r/R, where r and R are the radii of
the two circles. Thus ∠APB is twice the angle whose sine is r/R. By quoting a
general result, or after some angle chasing, we find that ∠AOB is twice ∠APB, so
∠AOB is four times the angle whose sine is r/R.
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In our case, r = 1 and R = 2, so ∠APO is 30◦, and therefore ∠AOB is 120◦.
Thus the required probability is 120/360, or more simply 1/3.

Comment. When this problem was done in a school workshop, the presenter—not a
student—argued that if P and Q are chosen at random, the perpendicular distance
from O to PQ is just as likely to be between 0 and 1 as it is to be between 1
and 2, so the required probability is 1/2. This is plausible-sounding but incorrect.
Geometric probability can be tricky!

VIII-7. Alphonse tosses 12 fair coins, and Beth tosses 13. Find the proba-
bility that Beth gets more heads than Alphonse.

Solution. Let p be the probability that when each tosses 12 coins, Beth gets more
heads. Then by symmetry p is the probability that Alphonse gets more heads, and
so the probability that they get equal numbers is 1− 2p.

Now Beth tosses her last coin. She gets more heads than Alphonse if (i) she was
already leading after 12 tosses (probability p) or (ii) they were tied after 12 tosses
and she got a head on the 13th (probability (1 − 2p)(1/2)). The two probabilities
add to 1/2.

Another way: Such a simple answer deserves a simpler solution. If Alphonse is
leading after 12 tosses, he has won, while if Beth is leading she has won. And if
they are tied after 12, she has a 50–50 chance of winning.

VIII-8. A fair die was tossed until a 6 turned up. What is the probability
that in the meantime a 5 was not thrown?

Solution. The events “5 occurs before 6” and “6 occurs before 5” are equally likely,
so the probability is 1/2.

VIII-9. A group of twelve physicists, including Alpher, Bethe, and Gamow,
get seated at random around a circular banquet table for twelve. Find the
probability that Alpher, Bethe, and Gamow are next to each other, not
necessarily in that order.

Solution. Choose at random the three chairs our trio are to occupy, without spec-
ifying who sits where. The number of ways to choose 3 objects from 12 is

(12
3

)

,
which turns out to be 220. Now count the number of ways to choose a set of three
neighbouring chairs. Such a set is completely determined once we have chosen
the middle chair. There are 12 ways of doing this, so the required probability is
12/220.

Comment. There were once three Cornell University physicists with these names;
Bethe and Gamow were famous, and Alpher not so famous. They co-authored an
important joint paper, and people joked that Bethe and Gamow had done the work,
and added Alpher to make the author list sound like alpha, beta, and gamma, the
first three letters of the Greek alphabet. Actually, Alpher had made a genuine
contribution to the paper.
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VIII-10. A class of 24 students is split at random into 4 volleyball teams.
Find the probability that Alphonse and Beth are on the same team.

Solution. We can assume that the coach starts off by saying “You, you, you, you,
and you, go with Alphonse.” There are 23 students in addition to Alphonse, and 5
of these will join Alphonse, so the probability that Beth is one of them is 5/23.

Another way: There are more complicated ways to solve the problem. Call the
teams I, II, III, and IV. There are

(

24
6

)

ways of choosing who is to be on team I. If

Alphonse and Beth are to be on team I, there are
(22
4

)

ways to choose the rest of the

team. So the probability that Alphonse and Beth are both on team I is
(22
4

)/(24
6

)

.
This is also the probability they are both on team II, that they are both on III,
that they are both on IV. So the required probability is 4

(22
4

)/(24
6

)

. After some
work this simplifies to 5/23.

VIII-11. Seven physicists get seated in a row at random. Find the proba-
bility that Bethe sits directly between Alpher and Gamow.

Solution. Let Alpher and Gamow be the first to sit down. Their chairs can be
chosen in

(7
2

)

ways, if we do not specify who sits where. These 21 ways are equally
likely.

Now we count the number of ways that these chairs can have exactly one chair
between them. Of the two chairs, the one on the left can be chosen in 5 ways. Once
it is chosen, the other is determined, so the probability there is exactly one chair
between Alpher and Gamow is 5/21.

Suppose there is exactly one chair between Alpher and Gamow. Now Bethe
sits down. The probability he sits in the chair between his two colleagues is 1/5.
So the required probability is (5/21)(1/5).

Another way: There are 7! ways of seating the seven people, all equally likely. We
count how many of these ways have Bethe directly between Alpher and Gamow.
The three adjacent chairs they are to occupy can be chosen in 5 ways. For each
of these ways, there are 2 ways of seating our trio—Alpher is either on the left or
on the right. And once the trio is seated, the remaining four chair can be filled in
4! ways. So there are (5)(2)(4!) ways of doing the seating. Thus our probability is
(5)(2)(4!)/7!.

VIII-12. In front of you are two urns. One of them—you don’t know
which—contains 2 twenty-dollar bills and 5 five-dollar bills. The other con-
tains 3 twenty-dollar bills and 11 five-dollar bills. You are given the following
options: (i) Pick an urn, reach in and pick out a bill at random or (ii) Pour
the contents of one urn into the other, then pick a bill at random. Which
option is better? How much better?

Solution. If we opt for (ii), we are choosing from an urn that holds 21 bills, of which
5 are twenties. So the probability of winning twenty dollars is 5/21.
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Option (i) is more difficult to evaluate. The probability of choosing the 7-item
urn is 1/2; once it has been chosen, the probability of getting twenty dollars is 2/7.
So the probability that we pick the 7-item urn and get twenty dollars is (1/2)(2/7).
Similarly, the probability we pick the 14-item urn and then get twenty dollars is
(1/2)(3/14). Add and simplify. The result is 1/4. Since 1/4 > 5/21, option (i) is
slightly better.

How much better? The usual way of comparing is to look at the average
winnings under each option. Under option (ii), on average we win (5)(16/21) +
(20)(5/21), that is, 180/21. Under option (i), on average we win 5(3/4) + 20(1/4).
The ratio of the expected winnings is about 1.021, so option (i) is about 2.1%
better.

VIII-13. A point P is chosen at random in an a× b rectangle R. Find the
probability that P is closer to the center of the rectangle than to any corner.

Figure 8.3: The Probability of Being Closer to the Center

Solution. We need to think about the meaning of “at random.” If you buy a lottery
ticket, then whether you win or not is a random event, but winning and not winning
are not equally likely. In this problem, we might select P by throwing a dart at R.
If we are good at darts and aim at the center, then a little disk of radius r near the
periphery has much less chance of being landed in than a disk of radius r near the
center. Yet the point is chosen, in a reasonable sense of the term, at random.

For this problem, take “at random” to mean that given a region S in R, the
probability that P is in S is proportional to the area of S. If the rectangle has
corners (0, 0), (a, 0), (a, b), and (0, b), we could choose P as follows. Use an ordinary
computer random number generator to generate random numbers u and v between
0 and 1. Then let P = (x, y) where x = au and y = bv.

We now have a purely geometric problem: Find the area of the part of R made
up of the points that are closer to the center than to any vertex. If A and B are
distinct points, let ! be the perpendicular bisector of the segment AB. Then the
points in the plane that are closer to A than to B are the points on the same side
of ! as A is.

Look at Figure 8.3. The four dashed lines play, one after the other, the role of
!. Concentrate on the north-east quarter Q of the rectangle. The points of Q closer
to the north-east corner than to the center consist of half the rhombus bisected by
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the dashed line, together with the triangle at the eastern edge of Q. So exactly half
of Q is closer to the north-east corner than to the center.

Similar reasoning applies to the other three quarters of R. We conclude that
the required probability is 1/2.

Comment. For students with not much experience in geometry, one might ask
first about an a × a square—the geometry is much simpler. We can ask similar
questions about parallelograms, or regular polygons. A point chosen at random in
an equilateral triangle has probability 2/3 of being closer to the center than to any
corner.

VIII-14. Alicia brought eight CDs to a party, each in its own case. Af-
terwards, the CDs were put back into the cases at random. (a) Find the
probability that every CD but one is in the right case. (b) Find the prob-
ability that all but two are in the right case. (c) Find the probability that
all but three are.

Solution. (a) If a CD is in the wrong case, then the CD that should be there is also
misfiled. So the probability that all but one is right is 0.

(b) Imagine that the CD cases are lined up in a row, say alphabetically, and we fill
them at random, starting on the left. The first case can be filled in 8 ways. For
each of these ways, the second case can be filled in 7 ways. So the first two cases
can be filled in 8 · 7 ways. For each of these ways, the third case can be filled in 6
ways, and so on. So there are 8! ways of filling the cases, all equally likely.

How many of these ways have exactly two mistakes? Exactly as many as there
are of choosing the two CDs that are to be in each other’s case, that is,

(8
2

)

. So the

probability of exactly two mistakes is
(

8
2

)

/8!, that is, 1/1440.

c) The three CDs which will be in the wrong cases can be chosen in
(8
3

)

ways. Say
the CDs are P , Q, and R. If P is in Q’s case, then Q must be in R’s (if Q were in
P ’s , then R would be in its own case, and there would be only two mistakes).

Similarly, there is only one admissible pattern in which P is in R’s case. So there
are 2

(8
3

)

ways to have exactly three mistakes. Divide by 8! to find the probability.
The answer is 1/360.

Comment. What is the probability that no CD is in the right case? That important
problem was first solved by the Chevalier de Montmort in the early eighteenth cen-
tury. Many famous mathematicians gave solutions, including Nicholas Bernoulli,
de Moivre, Laplace, and Euler, and generalizations are still being studied. De Mont-
mort was led to the problem by a popular card matching game.

The problem has many names, including Problème des Rencontres and Problem
of Derangements. An old-fashioned “word problem” version goes like this: Ten
gentlemen go to a party, checking their hats at the entrance. They drink a little too
much, and when they leave they pick up a hat at random. What is the probability
that no one gets his own hat?
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If there are n gentlemen, the probability that no one gets his own hat turns out
to be

1

2!
−

1

3!
+ · · ·+

(−1)n

n!
.

There are many proofs, but none is very easy. As n increases, the probability doesn’t
change much, and approaches e−1, where e is the base for natural logarithms.
Everything is connected to everything else!

VIII-15. Which is more likely: at least one six in 4 tosses of a fair die, or
at least one double-six in 24 tosses of two fair dice?

Solution. Call getting something other than six when you toss a die a failure. The
probability of a failure is 5/6. So the probability of 4 failures in a row is (5/6)4.
The probability of getting a six at least once is therefore 1− (5/6)4, about 0.5177.

Similarly, the probability that we get something other than a double-six when
we toss two dice is 35/36, so the probability we get a double-six at least once in 24
tosses is 1 − (35/36)24, roughly 0.4914. Thus getting at least one six in 4 tosses is
the more likely event.

Another way: We solve the single die problem. The result of tossing four times can
be represented as a “word” of length 4 made up using “letters” 1, 2, 3, 4, 5, and
6. There are 64 such words, all equally likely. There are 54 words that don’t use
the letter 6, so there are 64 − 54 words that use at least one 6. Hence the required
probability is

64 − 54

64
.

Comment. This problem is often (wrongly) attributed to the Chevalier de Méré.
He is said to have been a gambler who believed that there is a better than fifty-fifty
chance of getting at least one double-six in 24 tosses of two dice. Some improve the
tale and add that he gambled away his fortune by acting on this belief.

Nice story, nice moral. In fact de Méré was a philosophe associated with the
court of Louis XIV, and disapproved of gambling. De Méré had calculated that
there is a slightly less than fifty-fifty chance of getting at least one double-six in 24
throws. He was concerned because Cardano’s Liber de Ludo Aleae (Book of Games
of Chance), written about 100 years earlier, gave a rule of thumb that suggested
the opposite.

De Méré asked Pascal, who confirmed de Méré’s calculation. By the way, the
famous Pascal Triangle that gives a way of generating the binomial coefficients
appears in a book by Zhu Shijie, published in 1303, 320 years before Pascal was
born. There are earlier references to the method by Jia Xian and Yang Hui. And it
was known in India by the end of the ninth century, and possibly 1000 years before.
It was known even in Europe long before Pascal. The “Pascal” triangle is on the
title page of a 1527 book by Petrus Apianus.

The first systematic work in probability is Huygens’ De Ratiociniis in Ludo
Aleae (1657). Huygens also solves the problem of determining the smallest number
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of times one should toss one die (two dice) so as to have a better than fifty-fifty
chance of getting at least one six (a double-six).

We describe Huygens’ analysis for one six. Suppose player A wagers an amount
t that he will get at least one six in n tosses. Let his expected winnings be en. It is
clear that e1 = (1/6)t. What happens in n+ 1 tosses breaks down into two cases:
(i) The (n + 1)-th toss results in a six and (ii) it doesn’t. The probability of (i)
is 1/6, giving a contribution to the expected winnings of (1/6)t. The probability
of (ii) is 5/6, giving a contribution of (5/6)en. Thus Huygens obtains the recurrence
formula en+1 = (1/6)t + (5/6)en. Now he computes until he finds the first n, in
this case 4, for which en climbs above t/2.

Huygens doesn’t notice that en has a simple explicit formula. The combinatorial
approach that now dominates first presentations of probability is completely absent
from Huygens’ work! His recurrence formula approach is in fact more powerful.

In the sixteenth and seventeenth centuries, there was some confusion between
probability and mean. Note that the mean number of sixes in four tosses of a fair
die is 4/6, while the mean number of double-sixes in thirty-six tosses of two dice is
24/36, exactly the same.

VIII-16. Alicia drives to work every morning on deserted streets, just keep-
ing to the speed limit. The city recently installed a stoplight, which shows
green for 45 seconds, amber for 3 seconds, and red for 24 seconds. She never
goes through a red light, but if she can get through before it turns red, she
always does. Assume that she can go from rest to her usual driving speed
instantly. How much longer on average is her trip because of the stoplight?

Solution. With probability (45 + 3)/(45 + 3 + 24), or more simply 2/3, the light
shows green or amber when Alicia reaches it, and the delay is 0. With probability
1/3, the light shows red. When the light shows red, the average delay is 24/2
seconds. Thus 1/3 of the time the trip takes on average an extra 12 seconds, so the
average increase is 4 seconds.

Comment. We assumed that Alicia arrives at the light at a time which is random
with respect to the colour cycle of the light, so the probability she faces a red light
is the fraction of the time that the light is red.

This assumption sounds reasonable, but if the timer in the light works perfectly,
and if Alicia is a time fanatic, always leaving at exactly the same time and always
driving at the same speed, then the assumption is wrong, and she never (or always)
faces a red light. The assumption is also wrong if there are two synchronized
stoplights not far from each other and we are studying the delay at the second.

VIII-17. With two dice, the probability that a sum of 3 is tossed is 2/36,
the probability that the sum is 8 is 5/36, and so on. For a certain game, you
need sums 1, 2, . . . , 11, 12 to be equally likely. Can you relabel the faces of
the dice so as to obtain this?
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Solution. There are several ways to do it. We can leave one of the dice alone and
label three of the faces of the other 0 and the other three 6.

Or else label the faces of one die 0, 2, 4, 6, 8, 10 and three faces of the other 1,
and the remaining three 2. There are other possibilities.

Comment. Let P (x) = x + x2 + · · · + x11 + x12. The first solution is associated
with the factorization P (x) = (x+ x2 + · · ·+ x6)(1 + x6), and the second with the
factorization P (x) = (1 + x2 + x4 + · · ·+ x10)(x+ x2). Everything is connected to
everything else!

VIII-18. A and B are playing a coin-tossing game. A wins a point for
each head tossed, and B wins a point for each tail. Whoever first gets 6
points wins the game. (a) After six tosses, A is leading 4 to 2. Find the
probability that B comes back to win the game. (b) The players had agreed
that the loser would pay the winner 100 gold coins. Unfortunately, when A
was leading 4 to 2, B dropped dead. How much can A legitimately claim
from B’s estate?

Solution. (a) The easiest approach is to revise the rules somewhat: even after a
player gets to 6 points, the tossing continues for the full 11 tosses, and whoever
gets 6 or more points wins. The revised game is equivalent to the old, in the sense
that a player wins it if and only if she wins the old one.

In the revised game, B wins precisely if there are 4 or more tails in the last 5
tosses. There are 25 possible head/tail patterns for the last 5 tosses, all equally
likely. Of these, 6 lead to a win for B: HTTTT, THTTT, TTHTT, TTTHT,
TTTTH, and TTTTT. So the probability is 6/32.

(b) By part (a), when the game was interrupted by death A had probability 26/32 of
winning 100 gold coins, while B had probability 6/32. Imagine that the interruption
is only temporary, that the game resumes, and that the interrupted game scenario
takes place many times. Then on average A wins (100)(26/32) each time, and loses
(100)(6/32), so A’s average net gain is (100)(20/32). This is the fair assessment of
what B’s estate owes.

Comment. This is a modified version of the famous Problem of Points, which was
studied by a number of Renaissance mathematicians, including Pacioli, Tartaglia,
and Cardano. They all gave solutions, and all the solutions were wrong! The
problem was discussed—and solved—in 1654 in a series of letters between Fermat
and Pascal.

VIII-19. In a certain North American country, a letter reaches its intended
destination with probability 4/5. Whenever B gets a letter, she replies im-
mediately. If A sent B a letter and didn’t get a reply, what is the probability
that B actually got the letter?
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Solution. The analysis will be a bit sloppy. A proper argument requires the no-
tion of conditional probability. Imagine that the experiment of sending a letter is
repeated a large number N of times. Then in the long run B receives the letter
about 4N/5 times, and doesn’t receive it about N/5 times.

About (4N/5)(1/5) times the reply doesn’t get back to A. So A fails to get a
letter about N/5+4N/25 times. Among these failures, B got the letter 4N/25 times
but her reply got lost. So the required probability should be (4N/25)/(4N/25 +
N/5), that is, 4/9.

VIII-20. Xavier and Yolande pick, independently and at random, a digit
from 0 to 9. Find the average of the absolute value of the difference between
these digits.

Solution. Record their choices as a pair (x, y), where x is Xavier’s choice and y is
Yolande’s. There are 100 pairs. We interpret “at random” to mean that all pairs
are equally likely. We use the 10 × 10 dot array of Figure 8.4. The pairs (x, y)

Figure 8.4: Xavier and Yolande

with difference 0 are just the points on the south-west to north-east diagonal of the
square. One look shows there are 10 dots on this diagonal.

The pairs that differ by 1 are just the points on the two lines on either side of
the diagonal, so there are 18 such pairs. Similarly, there are 16 pairs with difference
2, and so on. Thus the average absolute difference is

(0 · 10) + (1 · 18) + (2 · 16) + · · ·+ (8 · 4) + (9 · 2)
100

.

The calculation is fairly short, so it may not be worthwhile to develop general tools.
The answer is 3.3.

Another way: The differences when Xavier picks 0 add up to 1+2+ · · ·+9, namely
45. This is also true when he picks 9. When he picks 1 or 8, the differences add up
to 37. When he picks 2 or 7, they add up to 31, when he picks 3 or 6, they add to
27, when he picks 4 or 5 they add to 25. Add up. We get

2(45 + 37 + 31 + 27 + 25).

To find the mean, divide by 100 as before.
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Comment. Now that we have solved the problem for the numbers 0 to 9, we are
ready to look at 0 to n. See VI-51 for ideas on how to tackle the final addition.

VIII-21. (a) A teacher had 100 students and 100 prizes to distribute. She
chose a student at random and gave that student a prize. Again she chose a
student at random, possibly the same one as before, and gave that student
a prize. This process was repeated 100 times. Find the probability that
Johnny didn’t get a prize. (b) Do the problem again for 1000 students and
1000 prizes.

Solution. (a) The probability that Johnny is passed over in the first round is 1 −
1/100. So the probability that he is passed over for 100 rounds in a row is (1 −
1/100)100. The calculator says that this is about 0.36603. (b) Using the same idea
as in part (a), we find that the answer is (1− 1/1000)1000, about 0.36696.

Comment. The remarkable thing is that the two answers are nearly equal. As n
becomes large, (1 − 1/n)n approaches 1/e, where e is the very important base for
natural logarithms (e is roughly 2.71828). Please see the comments after VIII-14
for a discussion of a related problem.

VIII-22. Assume that in basketball games the better team always wins.
Eight teams reach the last phase of a high school tournament. After that,
if a team loses a game, it is eliminated. So four teams are left after the
quarterfinal, and two get into the final. The runner-up is the team that
played in the final but lost. Find the probability that the runner-up is in
fact the second-best team.

Solution. There are complicated ways to find the answer, but also this simple one.
Think of the eight teams as divided by the tournament organizers into two pools of
four. The teams play in their pools, then the pool winners meet in the final. This
is how things really are done, but that’s not essential for the argument.

The second-best team is the runner-up precisely if it is not placed in the best
team’s pool. There are 3 places in the best team’s pool, and 4 not in its pool, so
the probability that the second-best team reaches the final is 4/7.

VIII-23. Five fair dice are tossed. Find the most likely number of 6’s.

Solution. Let the dice be black, blue, green, red, and white. Make a detailed record
of the numbers that come up. So for example the record (5, 2, 5, 1, 3) means that
5 came up on the black, 2 on the blue, 5 on the green, and so on. There are 65

possible records, all equally likely.
Find first the probability of 0 sixes. How many records have 0 sixes? There are

5 possible values for the first entry. For each of these, there are 5 possible values
for the second entry, and so on. It follows that there are 55 records with 0 sixes.
Thus the probability of 0 sixes is 55/65, about 0.4019.
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It looks as if we have found the winner already. But let’s find the probability
of 1 six. How many records have exactly 1 six? The six can be in any one of 5
places. Once the six is placed, the remaining four spots can be filled in 54 ways. So
there are 5 · 54 records with exactly 1 six. This is exactly the same as the number
of records with 0 sixes, so the events are equally likely. Since the two probabilities
add up to more than 80%, all other numbers are much less likely than 0 or 1.

Comment. It is easy to guess wrong, somehow thinking that since we toss 5 times,
and there are only 6 possible outcomes each time, getting 1 six should be signifi-
cantly more likely than getting 0 sixes. Intuition can require retraining for questions
of probability.

VIII-24. There are 52 cards in a standard deck, among them 12 face cards—
Jacks, Queens, and Kings. Three cards are dealt from a well-shuffled deck.
Find the probability that among them there is at least one face card.

Solution. Deal the three cards out in a row, face up. There are 52 · 51 · 50 possible
outcomes, all equally likely. How many ways are there to have at least one face
card? It is easier to count the ways in which we have none.

Forty cards are non-face cards, so there are 40 · 39 · 38 ways of dealing three
non-face cards. Thus the probability none of the cards is a face card is p, where

p =
40 · 39 · 38
52 · 51 · 50

.

The probability of at least one face card is 1− p, about 0.553.

Another way: There are
(52
3

)

ways of selecting 3 cards, all equally likely. But there

are 40 non-face cards, so there are
(40
3

)

ways of selecting 3 non-face cards. Thus

the probability that none of the cards is a face card is
(

40
3

)

/
(

52
3

)

, about 0.447. So
the probability of at least one face card is about 0.553.

Comment. The probability turned out to be significantly greater than 50%. On
average we would win money steadily by betting at even odds that there will be
at least one face card. Many would guess that the probability is less than 50%,
another example in which first intuitions about probabilities are some distance from
the truth.

VIII-25. A bowl contains 49 tickets, numbered from 1 to 49. Two tickets
chosen at random are removed. Find the probability that the numbers on
these tickets are within 10 of each other.

Solution. Imagine that the tickets are drawn one after the other. The result of the
draw is described by a pair (x, y) with 1 ≤ x, y ≤ 49 and x (= y. There are 49 · 48
such pairs, all equally likely. We count the pairs for which the two numbers are no
more than 10 apart.

For x = 1 and for x = 49, there are 10 values of y that work, for a total of 2 ·10.
For x = 2 and for x = 48, there are 11 values of y that work. Continue. For x = 10
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and for x = 40, there are 19 values of y. And finally, for any x with 11 ≤ x ≤ 39,
there are 20 values of y. There are n pairs for which the numbers are no more than
10 apart, where

n = 2(10 + 11 + 12 + · · ·+ 18 + 19) + (29 · 20) = 870.

Thus the required probability is 870/2352.

Another way: The solution should have started with a picture like the one that
goes with VIII-20. Since the numbers must be different, the points on the diagonal
are now missing, and of course the square of dots is 49× 49.

In the first solution, we counted the points within 10 of the (missing) diagonal.
The picture shows that the points more than 10 from the main diagonal look nicer,
since they form two triangles. Slide the upper triangle down and fit it next to the
lower one. We get a 39 × 38 array of dots. The probability the two numbers are
not within 10 of each other is therefore (39 · 38)/(49 · 48).

VIII-26. In a certain society, childbearers keep having children until they
have a girl and then stop. But if they get six boys in a row, they give up
and stop. In the long run, what percentage of children will be girls? Make
reasonable simplifying assumptions.

Solution. We model the process as follows. A large number of people each toss a
fair coin that has “G” written on one side and “B” on the other until a G turns
up, or until there are six B’s, whichever comes first. We want to find the long-run
proportion of G’s.

Start calculating. With probability 1/2, we get G immediately, and we have one
G. With probability 1/4, the game goes BG, and we have one B and one G. With
probability 1/8, the game goes BBG, and there are two B and one G. Continue in
this way. With probability 1/26, there are five B and one G, and finally again with
probability 1/26 there are six B.

The rest of the argument will be sloppy. Imagine playing a large number of
games, say 64N for some large N . About 1/2 of the time there will be one child,
giving 32N children roughly. About 1/4 of the time there are two, for a total of
(2)(16N) children. Continue in this way. We get

(1)(32N) + (2)(16N) + (3)(8N) + (4)(4N) + (5)(2N) + 6N + 6N,

children, a total of 126N . Among these there are about 32N + 16N + 8N + 4N +
2N + N girls, that is, 63N . The proportion of girls is about 63N/126N , that is,
1/2. With an answer like this, we must look for

Another way: Assume that children are always born on the same day, say Labour
Day. We follow the history of a group of people who start off with no children. On
the first Labour Day, all will have a child. On Labour Day of the second year, again
there will be births, probably a lot fewer because many had a girl immediately and
so stopped. Things go on like that for 6 years.
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Note that for every year, and for any child born that year, there is a fifty-fifty
chance that the child is a girl, so the overall probability is 1/2. (The preceding
sentence is in fact a complete analysis.)

Another way: Instead of imagining that many people play the coin tossing game
once, imagine that one person plays the game many times, maybe taking a brief
rest between games. On any toss of the coin, the probability of G is obviously 1/2.
The division into games is irrelevant.

Comment. Is the coin tossing model reasonable? We assumed that with probability
1/2 a birth is that of a girl. That’s not exactly true, even if there is no interference
with “nature.” In North America, the proportion of male births is greater than 50%,
but boys are more fragile, so there are more six-month old girls than six-month old
boys.

A more subtle built-in assumption is that the sexes of successive children are
independent of each other, like the tosses of a coin. That’s not strictly speaking
true. The sex of a child is influenced by some external factors. For instance, there
is evidence that male deep sea divers are slightly more likely to father girls. Thus
the fact that a childbearer produces a boy changes to a tiny degree our estimate of
the probability that her next child is a boy.

VIII-27. Suppose that I and another player take turns in throwing with
two dice on the condition that I win if I throw 7 points and he wins if he
throws 6 points, and I let him have the first throw. To find the ratio of my
chance to his.

Solution. With probability 5/36, we obtain a sum of 6 when throwing two fair dice.
The probability of throwing a 7 is 6/36. Call the players Alphonse and Beth, where
Alphonse has the first throw. Let A stand for “Alphonse throws a 6,” and A′ for
“Alphonse doesn’t throw a 6.” Similarly, let B stand for “Beth throws a 7,” and
B′ for “B doesn’t.”

We list all of the ways that Alphonse can win. They are A, A′B′A, A′B′A′B′A,
and so on. The probability ofA is 5/36. The probability ofA′B′A is (31/36)(30/36)(5/36).
The probability of A′B′A′B′A is obtained by multiplying the preceding number by
(31/36)(30/36), and so on. The required probability is the sum a+ ar+ ar2 + · · · ,
where a = 5/36 and r = (31/36)(30/36). By the usual procedure for summing a
geometric progression, the result is 30/61.

Now we can view it as obvious that with probability 1 one or the other must
win, and conclude that the probability Beth wins is 31/61, or else we can repeat
the analysis, adding up the probabilities of A′B, A′B′A′B, and so on. The ratio of
my (Beth’s) chance to his is 31 : 30.

Another way: Let p be the probability that Alphonse ultimately wins the game. For
him to win, he must either win (i) on the first throw or (ii) later. The probability
of winning on the first throw is 5/36. In order for Alphonse to win later, both
players must fail on their first attempts (probability (31/36)(30/36)), and then
(ultimately) Alphonse must win. But the probability he wins given that he has
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reached the third throw is p, since in a sense the game has started again. Thus
p = 5/36 + (31/36)(30/36)p. Solve: p = 30/61.

Comment. This is a verbatim translation of a problem from Christiaan Huygens’De
Ratiociniis in Ludo Alea (1657). Huygens did not work directly with probabilities,
but rather with what would be nowadays called expectations. He reasoned as
follows. Let the stake (the amount bet) be t. Let A’s expectation when it is B’s
turn to play be x, and A’s expectation when it is A’s turn be y.

When it is A’s turn, then with probability 5/36 he wins t, and with probability
31/36 he misses, it’s now B’s turn, and A’s expectation is x. Thus y = (5/36)t+
(31/36)x. If we analyze A’s expectation when it is B’s turn, we get x = (6/36)(0)+
(30/36)y. Solve: x = (31/61)t.

VIII-28. The school cafeteria offers three equally unpleasant lunch choices
A, B, and C. Every day, Zoe remembers how awful the previous day’s meal
was, and flips a fair coin to decide between the other two alternatives. Sup-
pose that on day 1 of school she had lunch A. (a) Find the probability that
she has lunch A on day 9. b) Let pn be the probability she has A on day n.
Find an expression for pn.

Solution. a) There is some symmetry in the problem: on any day, lunches B and
C are equally likely. We don’t have perfect three-fold symmetry because she had
A on the first day.

Start calculating. We have p1 = 1. On day 2, she has B or C, so p2 = 0. On
day 3, whether she had B or C the day before she chooses A with probability 1/2,
so p3 = 1/2. It follows that on day 3, the she has each of B and C with probability
1/4. After eating B or C, she next chooses A with probability 1/2, so p4 = 1/4. A
similar calculation gives p5 = 3/8, p6 = 5/16, p7 = 11/32, p8 = 21/64, and finally
p9 = 43/128.

b) If we stare at the numbers pn for a while, we notice that they seem to approach
1/3. This is reasonable: the choice Zoe made on day 1 should exert less and less
influence as time goes on. So let’s subtract 1/3 from each number. We get 2/3,
−1/3, 1/6, −1/12, 1/24, −1/48, and so on. The formula almost leaps out: pn is
(probably) 1/3 + (2/3)(−1)n−1/2n−1.

Maybe we should prove that the formula is correct, although the pattern is so
striking that it is probably churlish to doubt it. We can do it by mathematical
induction, but it is better to use a recurrence formula argument. What is pn+1 in
terms of pn? On day n, the probability she doesn’t eat A is 1− pn, and so she eats
A the next day with probability (1−pn)/2. Thus pn+1 = (1−pn)/2. Now we check
whether the conjectured expression for pn satisfies this recurrence and the initial
condition p1 = 1. It does.

Comments. 1. The distinction between guessing that a certain pattern continues
and seeing that it does can be subtle. For the sequence of this problem, the structure
jumps out if we compute half a dozen terms, specially if we don’t simplify. Someone
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who says that the result is obvious is probably right—and so is someone who says
it isn’t.

2. There are general methods for solving reasonably simple recurrences. Look in
books or on the Internet for information on Difference Equations.

3. We can look at the same problem in a slightly different way. Any day she had,
say that she was in state A. Because of the symmetry between B and C, if she
had one of these, say she was in state O (for “other”). We then have the following
transition probabilities. If you are in state A, you switch to O with probability 1.
If you are in state O, you switch to A with probability 1/2 and stay in O with
probability 1/2. This is a simple example of a Markov Chain. Markov chains have
many applications, from business to physics.

VIII-29. Toss a fair coin six times. You win if there is a run of three or

more heads or tails in a row. Find the probability that you win.

Solution. Record the result of the tosses as a word of length 6 made up of the
letters H and/or T. There are 26 such words, all equally likely. Count the words in
which there is a run of length three or more. To simplify the count, we count the
words for which three in a row happens and the first letter is H, then double the
result.

The word could start with HHH. The last three letters can be anything, so
there are 23 such words. The word could start with HHT. Then it either ends in
HHH, or TT followed by H or T, for a total of 3 words.

The word could start with HT. The next letter is either H or T. If the third
letter is H, we get three in a row in 3 ways: the word can end with TTT, HHH,
or HHT. If the third letter is T, we are looking at HTT. Three in a row happens if
the next letter is T (22 words) or if the word continues with three H.

Thus there are 19 words that start with H, and therefore 38 overall. The
probability of a run of three or more is 38/64.

Comment. The answer is 0.59375. With less effort, we can show that a run of
three or more in 5 tosses has probability 1/2. The result for either 6 tosses or 5
goes against the intuition of many people. Sports writers tend to underestimate
the probability of streaks. It is perfectly normal for a team to win or lose a few
games in a row, or for a basketball player to have a so-called “hot” or “cold” streak.
There is no mysterious psychology involved—the same thing happens with coins.

Suppose that students are asked, for homework, to toss a coin 500 times and
record the results. Some are too busy to toss, and quickly write down a string
of H’s and T’s. Almost certainly the string will not have enough streaks. In 500
tosses there should be several streaks of 6 or more, but someone inventing data will
probably not know that.

Since faking is easier and cheaper than running an experiment, and the results
are more controllable, it is not uncommon for experimental data to be invented,
specially in situations that involve many repetitions. Unless the faking is done by
a statistician, one can, by using a runs test, show that with high probability the
numbers are not genuine.
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VIII-30. Six different numbers are chosen at random from the integers 1
to 49. Find the probability that the smallest number is less than 6.

Solution. Six numbers can be chosen from 49 in
(

49
6

)

ways, all equally likely. We
now count the number of ways that smallest number chosen is greater than or equal
to 6. This is the number of ways of choosing six numbers from the 44 numbers 6,
7, . . . , 49, so it is

(44
6

)

It follows that the probability that none of the numbers is less than 6 is

(

44

6

)

/

(

49

6

)

.

Note that
(44
6

)

= (44 · 43 · 42 · 41 · 40 · 39)/6! while
(49
6

)

= (49 · 48 · 47 · 46 · 45 · 44)/6!.
The ratio is about 0.5048. Thus the probability that at least one number is less
than 6 is about 0.49522.

Comment. An avid lottery player noticed that numbers less than 6 seemed to come
up often, and brought to the author his suspicions that the lottery was crooked.
People notice small numbers more than numbers in the middle range. Consecutive
numbers also happen more often than intuition might suggest. And the lottery
doesn’t need to be crooked. It already keeps a far higher proportion of bettors’
dollars than organized crime does.

VIII-31. Find the smallest number of fair dice we should toss to have a
better than 50–50 chance of getting two or more sixes.

Solution. Let this number be n. Instead of tossing n dice, imagine tossing one die
n times. The probability of not getting a six when we toss a die is 5/6. So the
probability we fail to get a six n times in a row is (5/6)n. We now compute the
probability of exactly 1 six.

We could get six on the first try, then non-sixes the rest of the way. This has
probability (1/6)(5/6)n−1. Or we could get a non-six, then a six, then non-sixes the
rest of the way. This has probability (5/6)(1/6)(5/6)n−2, that is, (1/6)(5/6)n−1.
We go on like this and conclude that the probability of exactly 1 six in n tosses is
n(1/6)(5/6)n−1.

Thus n is the smallest integer such that

(

5

6

)n

+ n

(

1

6

)(

5

6

)n−1

<
1

2
.

We can’t expect to solve this kind of inequality by “formula.” But calculator
experimentation gives the answer quickly. It turns out that n = 10.

Comments. 1. We could use a graphing calculator to find the appropriate n. Let
f(x) = (5/6)x−1(5/6+x/6). Graph this function, and read off from the display the
first integer n for which f(n) dips below 1/2.
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2. The above problem, together with more sophisticated ones, was analyzed by
Christiaan Huygens in his De Ratiociniis in Ludo Aleae, published in 1657. The
book marked the beginning of systematic calculation of probabilities.

VIII-32. A box contains 10 tickets, numbered from 1 to 10. (a) Alphonse
picks a ticket at random, and keeps it. Then Beth picks a ticket. Find the
probability that Alphonse’s number is less than Beth’s. (b) How does the
answer change if Alphonse puts his ticket back in the box before Beth picks?

Solution. (a) Record the result of the experiment as a pair (a, b), where a is
Alphonse’s number and b is Beth’s. Since Alphonse kept his ticket, a (= b. All
pairs (a, b) with a (= b are equally likely. Since a can be anyone of the 10 numbers,
and b can take on 9 values for each a, there are 90 pairs.

How many pairs have a < b? Start counting. When a = 1, there are 9 pairs,
when a = 2 there are 8, and so on, so there are 9 + 8 + · · · + 1 pairs, that is, 45.
Thus our probability is 45/90.

Another way: We don’t need to count. For any pair, such as (3, 5), in which
Alphonse is below Beth, there is an associated pair, obtained by interchanging the
numbers, in which Alphonse is above Beth, so the probability is 1/2. This answer is
intuitively obvious. But probability can be tricky, and the experiment is described
in an asymmetric way (Alphonse picks first), so perhaps a bit of caution is a good
idea.

(b) Again we can count. This time, since a = b is possible, there are 100 equally
likely pairs. Just as in part (a), there are 45 pairs in which Alphonse’s number is
less than Beth’s, so the probability is 0.45.

It is neater to calculate first the probability that the numbers are equal. What-
ever Alphonse picks, Beth matches it with probability 1/10. Thus with probability
0.90 the numbers are unequal. By symmetry Alphonse’s number is less than Beth’s
with probability 0.45.

VIII-33. Four fair coins are tossed (tossing cycle #1). Those that come
up tails are removed. The ones that remain are tossed again (tossing cycle
#2). Those that come up tails are removed, and so on. Find the probability
that there are three or fewer tossing cycles.

Solution. We sketch a natural approach without completing the details. How can
there be three or fewer tossing cycles? If we get all tails on the first toss, there is
only one cycle, and that has probability 1/24.

There could be exactly two cycles. That can happen in several ways: one
coin survives the first cycle, then dies on the second; or two coins survive the first
cycle, but both die on the second, and so on. The probability that exactly one
coin survives the first cycle (“three tails”) turns out to be 4/24. Given that a
coin survives the first toss, the probability that it dies on the second is 1/2, so the
probability that one coin survives the first cycle but then dies is (4/24)(1/2). There
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are three more cases of this kind to examine, and we haven’t even started thinking
about the third cycle. But with patience and care, we could compute the answer.

Another way: Change the game a little. If a coin shows tails in any cycle, instead
of throwing it out and making it feel bad, put a small red dot on it and keep it in
the game. We need to find the probability that after 3 tosses of the coins, every
coin has some red on it, that is, has landed tails at least once.

The probability that coin A shows heads 3 times in a row is 1/8, so after 3
tosses it has some red on it with probability 7/8. Thus the probability that they
all have some red is (7/8)4.

Comment. LetN be the number of cycles that the game lasts, and let Pr(X) denote
the probability that X happens. We have

Pr(N ≤ 3) = Pr(N ≤ 2) + Pr(N = 3).

We have seen that Pr(N ≤ 3) = (7/8)4. By a similar analysis, Pr(N ≤ 2) = (3/4)4.
Now we know Pr(N = 3). The ideas generalize to more coins, more tosses, and to
consistently biased coins.

VIII-34. The faces of dice A, B, and C have been relabelled as follows. A
has two 2’s, two 4’s, and two 9’s; B has two 3’s, two 5’s, and two 7’s; and C
has two 1’s, two 6’s, and two 8’s.

X selects one of the dice. Then Y selects one of the remaining dice. They
each toss the die they picked. Whoever comes up with the bigger number
wins. Show that whatever die X picks, Y can pick a die that has a better
than 50% chance of beating X.

Solution. We show that B is “better” than A. Toss A and B, and record the result
as an ordered pair (a, b). By symmetry, all 9 achievable ordered pairs are equally
likely. We count the ordered pairs for which B “beats” A by listing them all: (2, 3),
(2, 5), (2, 7), (4, 5), and (4, 7). So B beats A with probability 5/9. If X picks die A,
and Y responds by picking B, then Y has probability 5/9 of beating X.

A similar calculation shows that die C beats B with probability 5/9 (so if X
chooses B, then Y should choose C) and die A beats C with probability 5/9. So
whatever X picks, Y can select one of the remaining dice and win with probability
5/9.

Comment. Last week, the teacher announced that in a week there would be an in-
class essay on a topic that she would choose at random from A, B, or C. Students
X, Y, and Z have studied these topics to various degrees. Table 8.1 shows how their
marks depend on the topic the teacher chooses. The calculation that was done for
the dice shows that Y has probability 5/9 of getting a higher mark than X, and Z
has probability 5/9 of getting a higher mark than Y, but X has probability 5/9 of
getting a higher mark than Z. So Y is “better” than X, and Z is better than Y, but
X is better than Z!
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A B C

X 40 90 20

Y 30 50 70

Z 80 10 60

Table 8.1: The In-class Essay

This paradoxical situation shows up in opinion polls. It can and does happen
that given a choice between products or politicians A and B, a majority prefers B,
and a majority prefers C over B, but a majority prefers A over C.

Note that the marks table is a magic square. Sums of the marks in each row, in
each column, and indeed in the two diagonals, are all equal. Everything is connected
to everything else!

VIII-35. A fair die is tossed six times. (a) Find the probability that each
of the six faces turns up once. (b) Find the probability that exactly five
different faces turn up.

Solution. (a) Record the results, in order. Each record is a six-letter word made
up of “letters” chosen from 1, 2, 3, 4, 5, 6. There are 66 such words, all equally
likely.

How many words are there in which the letters are all different? There are 6
ways to choose the first letter, and for each of these there are 5 choices for the second
letter, and so on. Thus there are 6! words in which the letters are all different. For
the probability, divide by 66. The result simplifies to 5/324: it is very unlikely that
the faces are all different.

(b) We count the words that have exactly 5 different letters. The letter that gets
left out can be chosen in 6 ways. For each such choice, the letter that gets to occur
twice can be chosen in 5 ways. Once this is done, decide where the repeating letter
occurs. That can be done in

(6
2

)

ways. And once the repeating letter is placed,
there are 4! ways to place the rest of the letters. Multiply. There are 15 · 6! words.
For the probability, divide by 66.

Another way: The answer for part (b) was 15 times the answer in part (a). That’s
not an accident. Construct the words with exactly 5 different letters in two stages:
(i) Make a word with 6 different letters and (ii) Take that word, pick two positions,
and replace the letter in the second position with a copy of the letter in the first
position.

In this way, we produce every word that we want once and only once. So to
answer part (b), multiply the answer in part (a) by

(

6
2

)

.

VIII-36. Xavier rolls one fair die, then Yolande rolls two. Xavier wins
unless at least one of Yolande’s dice beats Xavier’s. Find the probability
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that Xavier wins.

Solution. Colour one of Y’s dice red and the other green. Record the result of the
game as a triple (a, b, c), where a is the number thrown by X, b is the number on Y’s
red die, and c the number on Y’s green die. There are 63 possible triples (a, b, c),
all equally likely. We count the triples that result in a win for X.

First count the triples with a = 1. If X is to win, we must have b = 1 and
c = 1, so there is only 1 possibility. Now count the winning triples with a = 2. We
must have b ≤ 2 and c ≤ 2. Thus there are 2 choices for b, and for each of them 2
choices for c, giving 22 cases. Similarly, there are 32 cases with a = 3, and so on.
The total is 12 + 22 + · · ·+ 62, so X wins with probability 91/216.



Chapter 9

Problems in Computation

Introduction

These questions are of a kind not ordinarily asked in secondary school but
that seem appropriate in view of the pervasive presence of calculators in the
mathematics classroom. Many of the questions are about numbers too large
fully to fit in a standard calculator.

The problems are meant to be done with a calculator that displays no
more than 10 digits. There are tools that show many more digits. The
calculator utility in Microsoft Windows shows 31. Programs such as Maple
or Mathematica can operate to virtually unlimited precision. There are free
programs available on the Internet, including PARI-GP, UBasic, C libraries
for programmers, and many others.

In several problems, including IX-6, IX-7, IX-16, IX-25, and IX-26, the
main issue is that, because of roundoff errors, the calculator can give grossly
inaccurate answers. Problems IX-11, IX-29, and IX-28 give a glimpse of
some algorithms that computers use to do arithmetic with large numbers.
And IX-5 shows the startling effectiveness of the approximation method for
square roots often called Heron’s Method, while IX-4 begins the process of
extending the method.

Problems and Solutions

IX-1. A calculator is defective: the only operation keys that work are +,
−, and 1/x. Show how to use this calculator to find (a) the square of a
number; (b) the product of two numbers.

281
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Solution. (a) With the broken calculator compute

1

t− 1
−

1

t+ 1
, that is,

2

t2 − 1

(unless t = ±1, when we shouldn’t need a calculator to find t2). Invert and add the
result to itself to get t2 − 1, then add 1.

Or calculate 1/(t− 1)− 1/t, that is, 1/(t2 − t), invert, and add t. There are a
number of other approaches.

(b) Use the identity (x + y)2 − (x − y)2 = 4xy. By part (a), we can square with
the broken calculator, so we can find 4xy. If xy (= 0, get rid of the 4 by inverting,
adding the result to itself twice, and inverting again.

We can save quite a few steps by using a variant of the idea of part (a). Note
that 1/(t− 2)− 1/(t+ 2) = 4/(t2 − 4). Let f(t) = (t2 − 4)/4. Then f(t) is easy to
compute, and xy = f(x+ y)− f(x− y).

Comment. It is hard to imagine a practical application for part (a), but ideas like
those of part (b) have many uses. We give a historical example.

In the bad old days before calculators, adding by hand was reasonably fast,
but multiplication took a while. So to multiply people used slide rules, or tables of
logarithms.

They also multiplied by using quarter-squares tables that list t2/4, say for t
from 0.0000 to 2.0000. If x and y are between 0 and 1, to find xy calculate x + y
and x − y, look up (x + y)2/4 and (x − y)2/4 in the table and subtract! If x and
y aren’t in the right range, shift decimal points until they are, multiply as before,
then shift back.

They could also multiply using half-squares tables, because of the identity

xy =
(x+ y)2

2
−
(

x2

2
+

y2

2

)

.

To multiply with a half-squares table takes three table look-ups, two additions, and
a subtraction. With quarter-squares there are two table look-ups, an addition, and
two subtractions. For a number of reasons half-squares were more popular.

IX-2. Which is larger,
√
160001 +

√
159999 or 800?

Solution. My calculators incorrectly claim that the difference between the numbers
is 0. In general, which is larger,

√
x+ 1+

√
x− 1 or 2

√
x? Equivalently, we compare

(
√
x+ 1 +

√
x− 1)2 and 4x.

The expression on the left is equal to 2x+ 2
√
x2 − 1, which is less than 4x.

Comment. By rationalizing the numerator twice, we get

(√
x+ 1 +

√
x− 1

)

− 2
√
x =

−2
(√

x+ 1 +
√
x− 1 + 2

√
x
) (√

x2 − 1 + x
) .
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The expression on the right is calculator-friendly. When x = 160000, its absolute
value is about 4 × 10−9. Such a “large” difference ought to have been detected by
the calculator, but it wasn’t.

One calculator, a cheap one that displays a paltry 5 digits in scientific notation,
has no trouble with (

√
90001+

√
89999)−600. The other cost twice as much, displays

10 digits, and can’t handle the computation. It’s what’s inside that counts.

IX-3. Show that there is an integer k such that kπ is within 10−10 of an
integer. Hint: Look at π, 2π, . . . , Nπ where N = 1010.

Solution. Use a calculator to find the distance of nπ from the nearest integer for
n = 1, 2, 3, and so on. The first 7 results are roughly 0.14, 0.28, 0.42, 0.43,
0.29, 0.15, and 8.8 × 10−3. The dramatic dip at n = 7 shows that 22/7 is a good
approximation to π. We could continue to calculate—not with a calculator, that’s
hopeless, not enough digits—but with a program that can handle high precision
arithmetic. Instead, we will think about the calculation without actually doing it.

For any positive integer n, let an be the fractional part of nπ, that is, the part
of nπ after the decimal point. So

nπ = )nπ*+ an,

where )x* is the greatest integer which is less than or equal to x. For example,
7π = 21 + a7, where a7 is about 0.991.

Let N = 1010, and look at the sequence a1, a2, . . . , aN+1. Divide the interval
[0, 1) into N subintervals each of length 1/N . The first subinterval is [0, 1/N), the
second is [1/N, 2/N), and so on. There are N subintervals, and the sequence has
N +1 terms, so at least two of the ai lie in the same subinterval. We conclude that
there are integers m and n, with m < n ≤ N + 1, such that |an − am| < 1/N .

Because nπ = )nπ*+ an and mπ = )nπ*+ am,

(n−m)π = ()nπ* − )mπ*) + (an − am).

But |an − am| < 1/N , and therefore that (n−m)π is within 1/N of an integer.

Comments. 1. The proof didn’t produce an explicit k such that kπ is within 1/N of
an integer. But it says there is such a k of the form n−m, where 1 ≤ m < n ≤ N+1,
so 1 ≤ k ≤ N . Thus if we are patient and look in turn at π, 2π, . . . , Nπ, we are
certain to bump into a suitable k.

Exactly the same argument shows that if x is any real number and N is a
positive integer, then there is an integer k with 1 ≤ k ≤ N such that kx is within
1/N of an integer. There is a large literature on approximating real numbers
efficiently with fractions. Some of the most striking results in Number Theory have
been obtained by studying such approximations.

2. In the fifth century, Zu Chongzhi somehow found the approximation 355/113 to
π. It was rediscovered in Europe in the sixteenth century. The approximation is
remarkably accurate: 113π differs from 355 by about 3×10−5, so 355/113 is within
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2.7 × 10−7 of π. Other good approximations with not too large denominator can
be found by using continued fractions (see almost any Number Theory book or the
Internet).

IX-4. Let xn be a good approximation to
√
a. We can obtain a (usually)

better approximation xn+1 as follows. Let xn + cn =
√
a and square both

sides:
x2n + 2xncn + c2n = a.

If cn is small compared to xn, throw away the c2n term and conclude that cn
is approximately (a− x2n)/2xn. So if

xn+1 = xn +
a− x2n
2xn

=
xn
2

+
a

xn
.

then xn+1 should be an excellent approximation of
√
a.

Use a similar idea to show how to go from an approximation xn of 3
√
a to

the next approximation xn+1. Then starting from the approximation x0 = 2
for 3

√
10, compute x1, x2, and x3.

Solution. Let xn + cn = 3
√
a. Cube both sides. We obtain

x3
n + 3x2

ncn + 3xnc
2
n + c3n = a.

If cn is small compared to xn, then the last two terms on the left-hand side may
be neglected, and cn is approximately equal to (a− x3

n)/3x
2
n. Let

xn+1 = xn +
a− x3

n

3x2
n

=
2xn

3
+

a

3x2
n

.

Let a = 10 and x0 = 2. To calculator accuracy, x1 = 4/3+ 10/12 = 2.1666667,
x2 = 2.1545036, and x3 = 2.1544347.

Comment. Note that x3 differs from 3
√
10 by about 2.23 × 10−9, so we arrived

quickly at a very good approximation. The procedure for calculating square roots
was discovered long ago. Problem IX-5 gives a way of measuring its efficiency.

Try to adapt the idea of the above problem to x3 + 4x− 18 = 0. An analogous
procedure can be used to compute roots of f(x) = 0 for well-behaved functions f . In
calculus courses it is usually called the Newton Method, even though Newton only
casually mentioned it as a tool for approximating the roots of polynomials. There
is an extensive discussion of a similar method in Qin Jiushao’s Shushu jiuzhang
(Mathematical Treatise in Nine Sections, 1247).

IX-5. Define a procedure for approximating
√
a as follows. Let x0 be a

reasonably good first estimate of
√
a. If xn is the n-th estimate, the next
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estimate xn+1 is defined by xn+1 = (1/2)(xn + a/xn). Define en by xn =
(1 + en)

√
a.

(a) Let a = 10 and x0 = 3. Compute x1, x2, and x3.

(b) Show that en+1 = e2n/(2 + 2en).

(c) Use part (b) to compute e3.

Solution. (a) We have x1 = (1/2)(3 + 10/3) = 19/6. Similarly, x2 = 721/228 and
x3 = 1039681/328776.

(b) By the definition of the numbers ek,

(2 + 2en+1)
√
a = 2xn+1 = xn +

a

xn
= (1 + en)

√
a+

a

(1 + en)
√
a
.

Simplify. The
√
a terms disappear and we get

2 + 2en+1 = 1 + en +
1

1 + en
.

When we “move” the 2 to the right-hand side and simplify we obtain the desired
result.

(c) Since (1 + e0)
√
10 = x0 = 3, to calculator accuracy e0 = −0.051316701. Now

compute with the formula of (b). To two significant figures, e1 = 1.4 × 10−3,
e2 = 9.6× 10−7, and e3 = 4.6× 10−13.

Comment. The technique used to approximate
√
a is variously called the Babylo-

nian Method, Heron’s Method, or the Newton Method. It is wonderfully efficient.
We saw that in three steps we can find

√
10 with (in principle) relative error less

than 5× 10−13. We say in principle because a real calculator will make truncation
errors. In principle four iterations would give a relative error of 10−25. The number
of decimal places of accuracy roughly speaking doubles with each application of
Heron’s Method.

Problem IX-4 gives a justification of the recurrence formula that was used,
and extends the idea to cube roots. A more general procedure called the Newton-
Raphson Method can be used to approximate the roots of f(x) = 0. Usually, but
not always, the Newton-Raphson Method shares the computational efficiency of
Heron’s Method.

IX-6. The number 119071−30744
√
15 is about 4×10−6. Calculate it correct

to five significant figures.

Solution. If we key in 119071 − 30744
√
15, the calculator is likely to produce an

answer of 0—both of mine do—or something like 0.00001, which is somewhat worse.
We could solve the problem with the calculator that comes with Microsoft Win-
dows, or with a sophisticated computational tool such as Maple, Mathematica, or
MATLAB, but with a little thinking an ordinary calculator will do.
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Call our number a− b
√
15. Then

a− b
√
15 =

(a− b
√
15)(a+ b

√
15)

a+ b
√
15

=
a2 − 15b2

a+ b
√
15

.

With some calculator work we get a2−15b2 = 1. The calculator says that a+b
√
15

is about 238142. To five significant figures, the ratio is 4.1992× 10−6.

Comment. If a calculator is used to find the difference between two nearly equal
numbers, accuracy is lost, sometimes catastrophically so. Most calculators store
numbers internally to at most twelve significant figures, so the calculator may well
think that the two numbers are the same.

A calculator answer of 0 at least alerts us to the fact that something went
wrong. A more insidious mistake arises when, as is often the case, the final digit in
the internal representation of a number is in error. Then the calculator may report
an incorrect non-zero answer that we treat as being right—machines never lie.

By looking at the above problem in the right way, instead of finding the differ-
ence between nearly equal imprecisely known reals, we found the difference between
the known integers a2 and 15b2.

IX-7. Angle θ has radian measure 0.000002. Find
√
1− cos θ correct to two

significant figures.

Solution. Most calculators give the answer 0. Since
√
1− cos θ (= 0, the calculator’s

answer isn’t correct to two significant figures. The problem is that cos θ is close to
1, so the calculator thinks that 1− cos θ is 0.

We can get around the limitations of the calculator by noting that

√
1− cos θ =

√
1− cos θ

√
1 + cos θ√
1 + cos θ

=

√
1− cos2 θ√
1 + cos θ

=
sin θ√
1 + cos θ

.

Now compute. To two significant figures, the answer is 1.4× 10−6.

Comment. It can be shown that if the angle x, measured in radians, is not far from
0, then sinx is very close to x, and cosx is even closer to 1−x2/2. These estimates
are far more reliable than calculator values.

IX-8. A hollow copper sphere with radius 1 meter floats in a lake, half-
submerged. Find, correct to two significant figures, the thickness of the
copper. The density of copper is 8.94 times the density of water.
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Solution. The sphere has volume k, where k is a constant that happens to be 4π/3.
Let t be the thickness of the copper. Then the interior of the sphere has volume
k(1− t)3, so the copper has volume k − k(1− t)3.

The sphere displaces a volume k/2 of water. The weight of this water is equal
to the weight of the sphere. Assume that what’s inside the sphere weighs nothing.
Then

k/2 = ρ(k − k(1− t)3),

where ρ = 8.94. Simplify. The k cancels, (1 − t)3 = 1− 1/2ρ, so

t = 1− 3
√

1− 1/2ρ.

The calculator says that the copper is about 1.9 cm thick.

Another way: It is interesting to see what happens if we simplify too much, by
cubing 1− t. We obtain the equation

8.94t3 − 26.82t2 + 26.82t− 0.5 = 0.

or, if we didn’t cancel k, something even uglier. Note how efficiently “simplifying”
has destroyed the structure!

But all is not lost. The Solve key on the calculator works nicely. So do many
programs—spreadsheets, Maple, Mathematica, and others. But with just a simple
calculator, or even paper and pencil, we can reach an answer fairly quickly.

Let’s see where t is, roughly. Since t is quite small, t3 and 3t2 are very small.
For a first approximation, throw them away. Our first estimate for t is then t =
0.5/26.82, about 0.01864. One way to refine this already very good estimate is to
rewrite the equation for t as

t =
0.5

26.82
+

26.82t2

26.82
−

8.94t3

26.82
.

Plug our current estimate for t into the right-hand side of the above equation. We
get about 0.018988. When we then plug in 0.018988 for t, there is barely any
movement, so to two significant figures t = 0.019.

IX-9. Find an integer N such that the first three digits of
√
N to the right

of the decimal point are 3, 2, and 1, in that order.

Solution. The integer N has the required property if and only if

a+ 0.321 ≤
√
N < a+ 0.322

for some integer a. Equivalently, we want

a2 + (0.642)a+ (0.321)2 ≤ N < a2 + (0.644)a+ (0.322)2.

So we need to make sure that there is an integer between the lower bound and the
upper bound. That will be true if we pick a = 500. The left bound is then about
250321.1, the right bound is about 250322.1, so we can take N = 250322.
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Another way: Note that the difference
√
N + 1 −

√
N between square roots of

consecutive numbers is equal to 1/(
√
N + 1+

√
N). By the time N = 250000, this

difference is (barely) less than 0.001. At 250000 (and therefore 250001) the first
three digits of

√
N after the decimal point are 000. At 251000, they are 999. So

as N travels from 250001 to 251000, the first three digits of
√
N after the decimal

point travel from 000 to 999. In particular, they reach 321 at 250322.

Comment. We certainly don’t need to go as far as 250322. One way to tackle the
problem is with a brute force search—even a programmable calculator can handle
the job. The smallest N that works is 2054.

IX-10. Let X = (100 +
√
10001)3. Find the first two non-zero digits after

the decimal point in the decimal expansion of X.

Solution. Direct calculation with a standard calculator doesn’t work, so we use a
trick, well, not really a trick, more like a Method. Let

N = (100 +
√
10001)3 + (100−

√
10001)3.

Imagine expanding each of the cubes. Note that the terms that involve
√
10001

cancel, and therefore N is an integer. We conclude that

X = N + (
√
10001− 100)3.

Thus X is an integer (which happens to be 8000600) plus the small correction term
(
√
10001− 100)3.
We can use the calculator directly to estimate the correction term. It is safer

to rationalize the numerator and compute 1/(
√
10001 + 100)3. Either way, the

calculator says that the correction term is 0.000000124, so the first two non-zero
digits of X after the decimal point should be 1 and 2.

Comments. 1. If we had wanted (
√
10001−100)3 correct to three significant digits,

the calculator’s answer could be misleading. When one of my calculators is put
into scientific mode, it reports that the answer is about 1.249906× 10−7. That’s
essentially right, so 0.000000124 is certainly not correct to three significant digits.

2. Let n be a positive integer, and let

N = (100 +
√
10001)n + (100−

√
10001)n.

We describe a way of seeing, without computation, that N is an integer. If we
expanded, we would get

N = (100 +
√
10001)n + (100−

√
10001)n = a+ b

√
10001,

where a and b are integers that we do not compute.
In the first expression for N , replace

√
10001 everywhere by −

√
10001. We get

N right back. If we do the same thing with a+ b
√
10001, we get a− b

√
10001. But

there is no change, so b = 0!
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IX-11. Let N = 12345678. Calculate N2 exactly.

Solution. The answer is greater than 1014, and the usual scientific calculators do
not display—or carry internally—enough digits. But we can work our way around
this limitation. Since N = (1234× 104) + 5678,

N2 = (1234)2 × 108 + 2(1234)(5678)× 104 + (5678)2.

Using the calculator, we find that

N2 = (1522756× 108) + (14013304× 104) + 32239684.

Add (by hand). The result is 152415765279684.

Comment. Computer programs for high precision arithmetic do multiplication by
using an elaborate variant of the same idea. For a discussion, see Volume 2 of
Knuth’s The Art of Computer Programming.

IX-12. Let a = 99999. Calculate 2a3 + 3a2.

Solution. We can experiment with a calculator, using one 9, two 9’s, and three
9’s. The experimentation gives rise to a plausible conjecture which turns out to be
right. In general,

2(x− 1)3 + 3(x− 1)2 = 2(x3 − 3x2 + 3x− 1) + 3(x2 − 2x+ 1) = 2x3 − 3x2 + 1.

Put x = 105. We conclude that 2a3 + 3a2 = 1999970000000001.

IX-13. Object A is travelling at velocity u relative to the Earth, and B
is travelling in the opposite direction at velocity v relative to the Earth.
Newton’s theory of motion says that the relative velocity of B with respect
to A is u+ v. Einstein’s theory of Special Relativity says that the relative
velocity is

u+ v

1 +
uv

c2

,

where c is the speed of light in a vacuum.
Suppose that A and B are airplanes travelling in opposite directions,

each at 0.5 kilometers per second. By how much do Newton’s and Einstein’s
figures for their relative velocities differ, say to 2 significant figures? Assume
that the velocity of light is 300,000 kilometers per second.

Solution. The Newtonian prediction is 1. Special Relativity predicts that the rel-
ative velocity is 1/(1 + 0.25/c2). If we put this directly into my cheap calculator
and subtract 1, we unfortunately obtain an answer of 0, which can’t be correct to
even 1 significant figure.
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We can use algebraic manipulation to put the problem into a form the calculator
can handle. In general, the difference between the two predictions is

u+ v −
u+ v

1 +
uv

c2

, that is,
uv(u+ v)

c2 + uv
.

Now we can compute without trouble. To two significant figures, the answer is
2.8× 10−12.

IX-14. Find the solutions of the equation x2 − 108x + 200 = 0, correct to
3 significant digits.

Solution. Use the quadratic formula. The roots are (108±
√
1016 − 400)/2. It turns

out that, to 3 significant digits, (108 +
√
1016 − 400)/2 = 1.00× 108.

The other root is trouble. Ordinary calculators claim that the answer is 0. This
is definitely not correct to 3 significant figures. What are we to do?

A simple way out is to use the fact that if r and s are the roots of ax2+bx+c = 0,
then rs = c/a. We know one root to high accuracy. The product of the roots is
200, and therefore, to 3 significant digits, the other root is 2.00× 10−6.

Another way: Start from the standard formula for the roots of ax2+bx+c = 0 and
multiply “top” and “bottom” by (−b ∓

√
b2 − 4ac)/2a. After some manipulation

we find that the roots of the quadratic are

2c

−b∓
√
b2 − 4ac

.

In particular, (108−
√
1016 − 800)/2, which fooled the calculator earlier, turns into

the perfectly harmless 400/(108 +
√
1016 − 800), which we can evaluate to high

accuracy with an ordinary calculator. (The new quadratic formula has trouble
with the big root.)

Another way: Note that
√
1016 − 800 is equal to 108

√
1− ε, where ε = 8.00×10−14.

We examine
√
1− ε more closely.

For any ε close to 0,
√
1− ε is close to 1 − ε/2. We can verify this informally

by squaring 1− ε/2, and noting that the result is 1− ε+ ε2/4. The number ε2/4 is
utterly negligible in comparison with ε when the latter is close to 0.

Using this approximation to the square root, we find that the second root is
about (1/2)

(

108 − 108(1− 4× 10−14)
)

, that is, 2.00× 10−6.

Another way: Insofar as the small second root is concerned, the equation is really
not a quadratic at all! The x2 term only perturbs things a little bit, so for the
smaller root we are really looking at the linear equation −108x + 200 = 0, which
has the solution x = 2 × 10−6. To see how much the x2 term perturbs things,
rewrite the equation as

x =
200 + x2

108
,

and substitute our first estimate 2×10−6 into the right-hand side to get an improved
estimate. There is virtually no movement.
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Comments. 1. We ran into trouble because when we compute the second root
in the usual way, we are subtracting two large nearly equal numbers. Since the
calculator only keeps internally a limited number of digits, usually no more than
a dozen, the numbers 108 and

√
1016 − 400 are, from its point of view, equal, so

when asked to subtract one from the other it reports that the answer is 0.

2. In the second way of calculating the small root, the expression that has a square
root in the numerator is hard to work with, while the expression that has the square
root in the denominator works just fine.

Many a high-school student has been penalized for leaving square roots in the
denominator. That may have made sense once: paper and pencil division by an
ugly number is more painful than multiplication by an ugly number. But simplified
form for one purpose may be inappropriate for another.

IX-15. Find the smallest integer n such that 2n has 1000 digits in its decimal
representation.

Solution. We want the smallest n such that 2n ≥ 10999. Take logarithms to the
base 10. Note that

log(2n) = n log 2 and log(10999) = 999.

We want the smallest n such that n log 2 ≥ 999. The calculator says that
999/ log 2 is approximately 3318.6062, so we can probably safely conclude that
3318 < 999/ log 2 < 3319. It follows that 3319 is the smallest integer n that works.

Another way: The problem can be solved without explicit appeal to logarithms.
We can calculate 2n for various large n and experiment our way to the answer. But
there is an overflow problem: most calculators refuse to calculate 2n for n > 232.
We will fool the calculator into cooperating.

Note that 210 = 1024 = 1.024×103. So 23000 = 1.024300×10900. The calculator
says that 1.024300 is about 1.23× 10903. We need to reach 10999.

Since 210 = 1.024× 103, it follows that 2320 is about 2.136× 1096, and therefore
23320 is about 2.63 × 10999. If we divide by 2, we still have a 1000-digit number,
but dividing by 2 again brings us below 10999, so the smallest n is 3319.

Comment. Powers of 2 come up often in applications. The fact that 210 is roughly
103, or equivalently that log 2 is about 0.3, is useful for making ballpark estimates.

IX-16. A metal cube with initial volume 1000 cm3 was uniformly electro-
plated. The volume of the cube increased by 10−8 cm3. To 3 significant
figures, how much did the side increase?

Solution. The new side is 3
√
1000 + 10−8. To find the change, take away 10. If we

key this into an ordinary calculator, it says the answer is 0. So we take another
approach.

Note that
3
√

1000 + 10−8 = 10 3
√

1 + 10−11.
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The cube root of 1 + 10−11 is a number very close to 1, say 1 + ε for some small
positive ε. If we cube 1 + ε, we get

1 + 10−11 = 1 + 3ε+ 3ε2 + ε3.

Since ε is very small, the terms 3ε2 and ε3 are negligibly small compared to 3ε. So
to good accuracy we should have 10−11 = 3ε, and therefore ε = 3.33 × 10−12. It
follows that the change in side is about 3.33× 10−11.

We reached ε by an informal argument. But now we can verify in full detail
that we have 3 significant figure accuracy. The ε that we computed is too small,
since

3ε2 + ε3 < 4ε2 < 5× 10−23,

and 1 + 3ε = 1 + 0.999× 10−11. And it is clear that 3.334× 10−12 is too big.

Another way: Let a = 3
√
1 + ε, where ε = 10−11. Then

a− 1 =
a3 − 1

a2 + a+ 1
=

ε

a2 + a+ 1
.

In particular, a−1 < ε/3. To get an inequality the other way, note that for example
(1 + 3.333332× 10−12)3 is less than 1 + 10−11.

IX-17. Let n = 12345678987654321. Find the first three digits after the
decimal point in the decimal expansion of

√
n2 + n− n.

Solution. We can’t even key n into a calculator. To get some insight, ask the
calculator to find

√
x2 + x − x for large—but not too large—values of x. If we try

things like x = 20000, we are soon led to guess that the decimal expansion starts
with 0.499. (But if we use x = 1015, we will be seriously misled.)

Rationalize
√
n2 + n− n by multiplying “top” and “bottom” by

√
n2 + n+ n.

We obtain
√

n2 + n− n =
n√

n2 + n+ n
=

1
√

1 + 1/n+ 1
.

The quantity
√

1 + 1/n is imperceptibly larger than 1 when n is large, so the
decimal expansion starts with 0.499.

Comment. Consider
√

y2 + x, where y is positive and |x| is much smaller than y2.

Rewrite
√

y2 + x as y
√

1 + x/y2. Note that
√

1 + x/y2 is very close to 1 + x/2y2,
since (1+x/2y2)2 = 1+x/y2+x2/y4, and x2/y4 is negligible compared to 1+x/y2.
So
√

y2 + x is very close to y + x/2y.
Let x = y = n and conclude that

√
n2 + n is close to n + 1/2. Even better,

complete the square and rewrite n2 + n as (n+ 1/2)2 − 1/4. Then let y = n+ 1/2,
x = −1/4, and conclude that

√
n2 + n is very close to n+ 1/2− 1/(8n+ 4).

IX-18. Find log(2500 + 10150) correct to four decimal places.



CHAPTER 9. PROBLEMS IN COMPUTATION 293

Solution. Let’s hope that one of 2500 or 10150 is negligible compared to the other—
that would make things easy. Note that log(2500) = 500 log 2, so log(2500) is about
150.5149978: our two large numbers have the same order of magnitude.

We conclude that 2500 is, with small relative error, approximately equal to

100.5149978 × 10150,

that is, about 3.27339× 10150. Now add 10150 and find the logarithm of the result.
This is roughly 150+log(4.27339), which, correct to four decimal places, is 150.6308.

IX-19. Find the three leftmost decimal digits of 22000.

Solution. Crudely direct computation of 22000 with the xy key doesn’t work. Most
calculators snicker, print -E-, and insist on being turned off.

We can get around the problem by using logarithms, say to the base 10. Let
N = 22000. Then logN = 2000 log 2. The calculator says that logN is about
602.05999. Thus N is about 10602 × 100.05999, that is, 1.148130695× 10602. The
three leftmost digits are 1, 1, and 4.

Another way: We can do the calculation with a mildly creative use of the xy key,
or even just the x2 key. Note that 210 = 1024 = 1.024 × 103. Now we can take
quite high powers of 210 without complaint from the calculator. For example,
22000 = (210)200 = 1.024200 × 10600. The calculator says that 1.024200 is about
114.8130695. So the three leftmost digits are 1, 1, and 4.

IX-20. In 1614, John Napier published the first work on logarithms. His
logarithm, which we will call Nap x, was not quite the same as ours. It can
be defined by

x = 107
(

1−
1

107

)Napx

.

(a) Solve the equation Napx = 0. (b) Solve the equation Napx = 1. (c)
Show that if st = uv then Nap s+Nap t = Nap u+Nap v.

Solution. (a) Put Napx = 0 in the defining formula for Nap; we get x = 107. (b)
If we put Napx = 1, we get x = 107(1 − 1/107) = 9999999. (c) Temporarily, let
a = 1− 1/107. Then

st = 1014aNap s+Nap t and uv = 1014aNapu+Nap v.

Since st = uv, we obtain the desired result.

Comments. 1. Napier’s definition was functionally equivalent to the one we gave,
but quite different in appearance, and for very good reason: at the time, there was
no notion of general exponentiation! Bürgi also discovered logarithms, at about the
same time as Napier—before Napier, if you are Swiss, after, if you are British. Not
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much later, Briggs and others made the new tool more computationally useful by
publishing tables of what are now called base 10 logarithms.

2. Part (c) is one version of the addition law for Napier’s logarithms. We obtain
another version by observing that (xy)(1) = (x)(y), and therefore by part (c)
Napxy = Napx + Nap y − Nap 1. To find Nap1, we need to solve the equation
(1 − 1/107)z = 1/107. Ordinary logarithms will do the job, though we are close to
the end of the comfort zone of the calculator. The answer is about 1.61181× 108.
This produces a rather ugly addition law—a good indication that Nap isn’t quite
the right logarithm.

3. The defining equation for Nap can be written

x

107
=

(

(

1−
1

107

)107
)

Nap x

107

.

When n is large, (1−1/n)n is close to e−1, where e is the base for natural logarithms.
For n = 107, they agree to 7 decimal places. To very high accuracy, Napx is about
−107 ln(x/107).

4. The 107 that clutters things is there partly because in Napier’s time decimal
fractions were new to Western Europe. (They had been used for more than a
thousand years in India.) Napier’s tables were for Napx where x is an integer.

Base 10 positional notation for integers had been used by merchants in Europe
for hundreds of years, but well into the sixteenth century high precision computa-
tions, notably in astronomy, used the ancient Babylonian base 60 system!

IX-21. Find the number of digits in the decimal representation of P , where
P = 26972592

(

26972593 − 1
)

.

Solution. Any scientific calculator can handle this. Let N = 26972592+6972593. Then
log10 N = 13945185 log10 2, about 4197918.98. Since P < N , log10 P is less than
4197918.98. And since 100.98 is about 9.54, and N/P is ludicrously close to 1,
log10 P is greater than 4197918. Therefore P has 4197919 decimal digits.

Comment. The number P of the problem is at this time the largest perfect number
known. For more information about perfect numbers, see VII-18.

IX-22. Let N = 123456789. Find the remainder when (N − 4)9 is divided
by N .

Solution. We could calculate the ninth power and then divide, but that is neither
quick nor pleasant nor instructive.

Instead, imagine multiplying out (N − 4)9—don’t actually do it, that’s messy
and unnecessary. Is it obvious that the result has shape kN − 49, where k is an
integer? Yes, if we use the Binomial Theorem. But we can convince ourselves in
simpler ways. In general, for any m, (am + b)(cm + d) has shape km + bd. So
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(N − 4)(N − 4) has shape kN + (−4)2. But then (N − 4)2(N − 4) has shape
kN + (−4)3, and so on.

We have found that (N − 4)9 has shape kN + (−4)9, which can be written as
(k − 1)N + (N − 2621444). Divide by N . The remainder is N − 262144, that is,
123194645.

Comment. The old-fashioned phrase “has shape kN+a” is awkward, since k keeps
changing. It has been largely replaced by the congruence notation. The calculation
is shorter than it looks—most of the space was taken up with explanations. Once
we have built up some theory the actual work is quick.

IX-23. My calculator says that
3
√

2 +
√
5 +

3
√

2−
√
5 is nearly equal to 1.

Show that it is exactly equal to 1.

Solution. Maybe 2 +
√
5 is the cube of something nice, something of the shape

u + v
√
5 where u and v are rational. Then 2 −

√
5 is the cube of u − v

√
5. If the

sum is to be 1, then u must be 1/2.
Is there a rational v that works? We need to have

1

2
+ v

√
5 =

3

√

2 +
√
5.

The calculator suggests that v = 1/2. It is now straightforward to verify by hand
that indeed

(

1

2
+

√
5

2

)3

= 2 +
√
5.

Another way: Let x =
3
√

2 +
√
5, let y =

3
√

2−
√
5, and let x + y = w. Then

w3 = x3 + y3 + 3xy(x+ y). Note that

x3 + y3 = 4 and xy =
3

√

(2 +
√
5)(2 −

√
5) = −1.

Thus w3 + 3w − 4 = 0. This has the obvious solution w = 1. Since

w3 + 3w − 4 = (w − 1)(w2 + w + 4),

and the equation z2 + z + 4 = 0 has no real solution, w is indeed equal to 1.

Comment. The calculator’s answer of 1 can be presumed correct to 9 decimal
places, since the calculator does calculations internally to more places than it re-
veals, and there is no obvious source of large roundoff error. Thus in light of the
calculation, it is reasonable to conjecture that the answer is exactly 1. In the first
solution, the calculator suggested that v might be 1/2, and this quickly led to a
proof, so the solution is a (modest) example of a computer-aided proof. Recently,
high precision calculations have given rise to a number of interesting mathematical
conjectures, many of which have been proved correct.
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IX-24. The year is 1600, and you need to find (1.076)15 , so you use a com-
puter, that is, a human being who has mastered the art of multiplication
and—sometimes—division. The computer charges a penny for each multi-
plication. There is an obvious way to find (1.076)15 with 14 multiplications,
but that costs 14 pennies. Can it be done more cheaply? How cheaply?

Solution. To calculate a15, we can calculate in turn a2, then a4, then a8, then a12,
a14, a15 (the cost is six pennies). Somewhat more efficient is the sequence a2, a3,
a6, a12, a15 or a2, a4, a5, a10, a15 (each costs five pennies).

IX-25. Triangle ABC has AB = AC = 106+10−6 and BC = 2×106. Find
the area of %ABC, correct to five significant digits.

Solution. Let M be the mid-point of BC. Using the Pythagorean Theorem, we
compute the length of AM . Let 106 = u and 106 + 10−6 = v. Then the length
of AM is

√
v2 − u2. On most calculators, there is a problem if we try to key in

v, directly or indirectly, for the calculator behaves as if v = 106, and reports that
v2 − u2 = 0. But note that v2 − u2 = (v + u)(v − u) = 2 + 10−12. The square root
is very nearly

√
2. To find the area, multiply by 2× 106 and divide by 2. The area

is about 1.4142× 106.

IX-26. The number

8765432

(1234568)3 − (1234570)(1234567)2
.

lies between 2 and 3. Find the first digit after the decimal point.

Solution. If we compute in the natural way, most calculators do not give the correct
answer, in fact do not give an answer between 2 and 3. The denominator is the
difference between two nearly equal very large integers. Even though the calculator
keeps guard digits beyond the ones it reveals, it can’t handle the computation.
A computer program like Maple that can calculate to “arbitrary” precision could
handle the problem, but so can we.

Let 1234567 = x. Then the denominator is (x+1)3−(x+3)(x2). But (x+1)3 =
x3 + 3x2 + 3x + 1, so the denominator is 3x + 1, that is, 3703702. Divide. The
answer, truncated to 3 decimal places, is 2.366.

IX-27. The number (2 +
√
7)11 can be expressed as a+ b

√
7 where a and b

are integers. Find b.

Solution. Note that

if (p+ q
√
7)(r + s

√
7) = x+ y

√
7, then (p− q

√
7)(r − s

√
7) = x− y

√
7.

By applying this fact repeatedly we can see that (2−
√
7)11 = a−b

√
7, and therefore

2b
√
7 = (2 +

√
7)11 − (2−

√
7)11.



CHAPTER 9. PROBLEMS IN COMPUTATION 297

Compute. The calculator says that b is about 4111842.997, but we know that b is
an integer. The calculation error is presumably not large, so b = 4111843.

Another way: We can simply multiply. Let x = 2 +
√
7. Then x2 = 11 + 4

√
7. So

x4 = 233 + 88
√
7. Thus x8 = 108497 + 41008

√
7. But x3 = 50 + 19

√
7. Finally,

b = 108497 · 19 + 41008 · 50 = 4111843.

Comment. There was nothing really special about the numbers chosen. The first
solution exploits the symmetry between powers of p+ q

√
d and powers of p− q

√
d.

That symmetry leads to interesting numerical facts. For instance, one probably
would not immediately suspect that (5+

√
21)2001+(5−

√
21)2001 is an even integer,

and that as a consequence (5+
√
21)2001 has a decimal expansion with an enormous

number of zeros after the decimal point.

IX-28. Let a = 57 and m = 2718. Find efficiently the remainder when a520

is divided by m. Use the fact that if u and v are the remainders when x
and y are divided by m, then the remainder when xy is divided by m is the
same as the remainder when uv is divided by m.

Solution. First we find the remainder when a2 is divided by m. This is easy:
a2 = 3249, so the remainder is 531. Now find the remainder when a4, that is,
(a2)(a2), is divided by m. This is the same as the remainder when 5312 is divided
by m, and this is 2007. Now find the remainder when a8, that is, (a4)(a4), is divided
by m. The result is 2691.

Continue. The remainder when a8 is divided by m is 729. For a16, it is 1431.
For a32 to a512, the remainders are 1107, 2349, 261, 171, and 2061. Finally, to find
the remainder when a520 is divided by m, find the remainder when (2061)(729) is
divided by m. The result is 2133.

Comment. The calculation took 10 steps, where a step consists of multiplying two
numbers and finding the remainder when the result is divided by m. We could also
have reached a520 in 519 steps, by repeatedly multiplying by a and calculating the
remainder each time. Already for 520 the method we used is significantly more
efficient than the naive method of repeatedly multiplying by a.

There are real applications, such as public key cryptography, in which if ex-
ponentiation were done in the naive way, encrypting/decrypting a simple message
with a fast computer would take longer than the age of the universe, while if done
efficiently it takes a small fraction of a second.

IX-29. Let N = 98712888881234566666. Find the remainder when N is
divided by 31416.

Solution. We do an ordinary pencil and paper division, but use the calculator as
much as possible. One difference is that instead of “bringing down” digits one at a
time, to save time we bring them down five at time.

First find the remainder when 9871288888 is divided by 31416. How? Use the
calculator to divide as usual. We get 314212.1495. Immediately subtract 314212,
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using the calculator. The displayed result is 0.1494777. The mysterious digits at
the end are guard digits : internally, the calculator works to higher accuracy than
it displays. We have just tricked the calculator into revealing its guard digits. Now
multiply by 31416. We get 4695.969432. There has been some roundoff error, but
we can conclude with reasonable confidence that the remainder at this stage is 4696.

Now “bring down” 12345, getting 469612345. Find the remainder on division
by 31416, just as in the paragraph above. We get 5977. Bring down 66666, find
the remainder. We get 14434.

Comments. 1. If we put in a few additional ideas, we get an efficient algorithm for
calculating the quotient and remainder when N is divided by M , where N and M
are allowed to be very large. For an excellent discussion, see Volume 2 of Knuth’s
The Art of Computer Programming.

2. The fact that calculators keep guard digits is one more reason to arrange calcu-
lations so that we seldom or never write down an intermediate answer and key it
back in later. To rekey takes time, introduces the possibility of keying errors, and
loses accuracy, since the guard digits are in effect thrown away. It is important to
learn to use the memory feature of modern scientific calculators.

IX-30. A temperature was taken with a thermometer that reads in degrees
Fahrenheit, and recorded to the nearest degree. The recorded number was
later converted to degrees Celsius, using the formula TC = (5/9)(TF − 32),
where TF is the Fahrenheit temperature, and TC the Celsius temperature.
The result was then rounded to the nearest degree Celsius. How large can
the absolute difference be, in degrees Celsius, between the true temperature
and the temperature computed through this process?

Solution. When the temperature was recorded, the rounding error was at most 1/2
of a degree Fahrenheit, that is, 5/18 of a degree Celsius. And in the rounding after
the conversion, an error of no more than 1/2 degree Celsius is introduced, so the
final error is no more than 5/18 + 1/2, that is, 7/9.

That doesn’t answer the question. The error can’t be greater than 7/9, but we
have not shown that an error of 7/9 can happen, and in fact it cannot.

For the error to be 7/9, the true Fahrenheit temperature must be x + 1/2,
where x is an integer. The recorded temperature is then x + 1, which is converted
to (5/9)(x + 1 − 32). To produce an an error of 1/2 in the second rounding, we
need (5/9)(x − 31) = y + 1/2, where y is an integer. This equation simplifies to
10x−18y = 319, which has no integer solution, for the left-hand side is always even
but the right-hand side is odd.

Start again! Let x be the recorded temperature in degrees Fahrenheit, and let
y be the nearest integer to (5/9)(x − 32). Then (5/9)(x− 32) = y + e, where e is
the rounding error, which may be negative.

We want |e| to be as large as possible. The defining equation for e simplifies to
5x − 9y = 160 + 9e. Thus 9e must be an integer. Since |e| ≤ 1/2, it follows that
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|e| can’t be greater than 4/9. We now work backwards and construct an example
where the second rounding error has absolute value equal to 4/9.

Take e = −4/9. First we solve 5x − 9y = 156 in integers: x = 42, y = 6
works. Let the true temperature in degrees Fahrenheit be 41.5; this is rounded up
to 42. Conversion gives 5 5

9 , which is rounded up to 6. The combined error of 13/18
degrees Celsius is the largest possible error.

Comment. There is a subtle point in the construction of an example with maxi-
mum error. How do we round numbers whose decimal expansion ends in a 5, like
41.5? There are two common conventions to deal with this situation: round up, or
round so that the last digit will be even. The example works with either of these
conventions. If we try to make e = 4/9 rather than −4/9, and use the “round up”
convention, then an error of absolute value exactly 13/18 is not possible.

In a blood cell study that the author was once asked to interpret, the data had
been subjected to a standard transformation. The results were rounded, and the
original data were then discarded! It turned out that the rounding had in effect
made the study useless.



Chapter 10

Maxima and Minima

Introduction

These problems require finding the maximum or minimum value of a func-
tion. About one-third are “word problems” in which the function isn’t given
explicitly.

In most cases, the problem can be solved by using the differential calcu-
lus. But even though this is usually not stated explicitly, the problems are
meant to be done without calculus. Many senior secondary students haven’t
been introduced to the calculus. Even when they have, they often use it at
a purely algorithmic level. Why use a mysterious piece of machinery when
we can retain full control and see exactly what’s going on?

A surprising number of the problems hinge on the simple fact that the
maximum value of sin θ is 1. Many more come down to observing that any
square is non-negative. “Completing the square” is a useful tool in many
areas of mathematics. It comes up in some form in half the problems, for
instance X-1, X-10, and X-18. Even more important is interpreting the
problem geometrically and visualizing correctly, as in, for example, X-11
and X-23. Many of the solutions take advantage of symmetries. Some of
the problems, particularly from X-27 on, are quite difficult.

Problems and Solutions

X-1. Let f(x) = 4 − (2x2 + 2x − 1)3. Find the maximum value of f(x) as
x ranges over the reals.

300
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Solution. Complete the square. For any x,

2x2 + 2x− 1 = 2

(

x2 + x−
1

2

)

= 2

(

(

x+
1

2

)2

−
3

4

)

.

Since a square can’t be negative, 2x2 +2x− 1 is never less than −3/2, and is equal
to −3/2 when x = −1/2. The maximum value of f(x) is therefore 4 − (−3/2)3,
that is, 59/8.

Comment. We started the completing the square process by dividing the quadratic
by 2. T o avoid fractions for a while, multiply by 2 and observe that 4x2+4x− 2 =
(2x− 1)2 − 3.

Most textbook proofs of the quadratic formula “simplify” ax2 + bx+ c = 0 by
dividing through by a, creating an immediate mess. It is better to multiply by 4a
and then complete the square. We get

4a2x2 + 4abx+ 4ac = 0 if and only if (2ax+ b)2 = b2 − 4ac.

So 2ax = −b±
√
b2 − 4ac, and there is stuff in the denominator only at the end.

X-2. In Figure 10.1, %ABC is right-angled at C, and M is the midpoint of
CB. Given that %ABC has area 1, how short can AM be?

A

B

C

M

Figure 10.1: The Smallest Median

Solution. Let x be the length of CA and let CB = 2y. Since %ABC has area 1,
we have xy = 1. By the Pythagorean Theorem, (AM)2 = x2 + y2. We need to
minimize x2 + y2 given that xy = 1. Note that

x2 + y2 = (x− y)2 + 2xy = (x− y)2 + 2.

The quantity on the right has minimum value 2, obtained by putting x = y. The
shortest possible median AM has length

√
2.

Another way: We need to minimize
√

x2 + y2 given that x and y are positive and

xy = 1. But
√

x2 + y2 is the distance from the point (x, y) to the origin. As (x, y)
roams over the first-quadrant part of the hyperbola xy = 1, it comes closest to the
origin when it reaches (1, 1).
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Comments. 1. If we substitute 1/x for y, the function to be minimized becomes

x2 +
1

x2
,

and we can use the same argument, since x2 + 1/x2 = (x− 1/x)2 + 2. Eliminating
y is the standard first-year calculus approach. Keeping both x and y emphasizes
the symmetry.

2. The height of %ABC was called 2y rather than y in order to make the expression
for AM look (a bit) nicer. There is little harm in calling it y, but making things
look nice is important.

3. The triangle AMB plays no role in the argument. Throw it away and complete
%ACM to a rectangle. This rectangle has area 1. So the triangle problem is the
same as the problem of finding the smallest diagonal among all rectangles of area 1
(it is

√
2, and the rectangle is a square). A closely related problem is finding the

rectangle of largest area among all rectangles with given diagonal.

X-3. Use two thin sticks of length a and two of length b to make a kite-
shaped figure that encloses the largest possible area and find that area.
Please see Figure 10.2.

a

a

b

b

Figure 10.2: The Maximum Area of a Kite

Solution. Think of the kite as made up of two congruent triangles each of which
has a side of length a and one of length b. We determine the angle between “a”
and “b” that maximizes the areas of these triangles.

View each triangle as having base b. Then the larger the height, the larger the
area of the triangle. The greatest height is reached when “a” is perpendicular to
“b.” Each triangle then has area ab/2, so the largest possible area is ab.

Comment. If two sides of a triangle have length a and b, and the angle between
these sides is θ, then the triangle has area (1/2)ab sin θ. If we let θ vary, the area
reaches a maximum when sin θ = 1. But it is better to see a hinge between “a”
and “b,” and “a” trying to reach as high as possible.

Any kite can be made by slicing a parallelogram with sides a and b along a
diagonal, turning one of the halves upside down, and glueing along the diagonal.
Among all parallelograms with sides a and b, the rectangle has the largest area.
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X-4. Find the smallest possible value of

|x− 12|+ |x− 22|+ |x− 32|+ · · ·+ |x− 1002|.

Solution. We look at a more general problem. Let a1 < a2 < · · · < an; we want to
minimize |x− a1|+ |x− a2|+ · · ·+ |x− an|. Imagine travelling to the right on the
x-axis, from a place x well to the left of a1 to a place x to the right of an.

Since |x−ai| is the distance between x and ai, |x−a1|+ |x−a2|+ · · ·+ |x−an|
initially decreases as we travel rightward. Suppose that we have reached a point in
the interval between ak and ak+1 and take a tiny step of length ε rightward, still
staying in the interval (ak, ak+1).

Our distance from each of a1, a2, . . . , ak increases by ε and our distance from
each of ak+1, ak+2, . . . , an decreases by ε. Thus the sum of the distances to all
the ai decreases as long as k < n/2, increases if k > n/2, and doesn’t change if
k = n/2.

In our problem, n = 100 and the smallest sum s is reached at any point b
between 502 and 512, so

s =
(

(b2 − 12) + (b2 − 22) + · · ·+ (b2 − 502)
)

+
(

(512 − b2) + (522 − b2) + · · ·+ (1002 − b2)
)

.

Add up: all the b2 terms cancel. By rearranging, we find that

s = (512 − 502) + (522 − 492) + · · ·+ (1002 − 12).

Factor each difference of squares. We conclude that s = 101(1 + 3 + 5 + · · ·+ 99).
The sum of the arithmetic progression 1 + 3 + · · ·+ 99 is 2500, so s = 252500.

X-5. A teacher wants to put on a test an equation of the shape

(x− 1)(100 − x) = M,

and regrettably wants the roots to be integers. Find the biggest M that
works.

Solution. Let f(n) = (n− 1)(100− n). We look for the biggest value of f(n) as n
ranges over the integers. For any n,

f(n+ 1)− f(n) = (n)(99 − n)− (n− 1)(100− n) = 100− 2n.

So if n < 50 then f(n+ 1) > f(n), if n = 50 then f(n+ 1) = f(n), while if n > 50
then f(n+1) < f(n). As n is incremented by 1’s, f(n) grows, briefly stays steady,
and then falls. It is therefore biggest when n = 50 and when n = 51. Thus the
biggest M that works is 49 · 50.
Another way: Complete the square. For any n,

f(n) = −n2 + 101n− 100 = −
(

n−
101

2

)2

+

(

101

2

)2

− 100.
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Thus f(n) is biggest when |n− 101/2| is least. Since n is restricted to integers, the
smallest possible value of |n− 101/2| is 1/2. It is reached when n = 50 and also
when n = 51. Thus the biggest possible M is f(50), that is, 2450.

Comments. 1. We prefer the first solution: it seems more direct, less mechanical.
Users of calculus should note that the difference f(n + 1) − f(n), which we can
rewrite as

f(n+ 1)− f(n)

1

bears a formal resemblance to the derivative. (It is used as a mathphobe’s version
of the derivative in some economics courses.) We examined where f(n+ 1)− f(n)
is positive and where it is negative. This is analogous to the standard calculus
procedure of asking where the derivative is positive or negative.

2. In the second solution, the process of completing the square is a bit messy—too
many fractions, too many minus signs. Note that

−4f(n) = 4n2 − 404n+ 400 = (2n− 101)2 − 1012 + 400.

So if instead of maximizing f(n) we equivalently minimize −4f(n), expressions look
nicer and errors are less likely.

X-6. A circle C has center O, and P is a point in the interior of C other than
O. Find all points X on C such that ∠OXP is as big as possible. Please see
Figure 10.3.

O P

X

Figure 10.3: Maximizing ∠OXP

Solution. Let θ = ∠OXP and φ = ∠OPX . Let the radius of C be r, and let a be
the distance from O to P . By the Sine Law,

sin θ

a
=

sinφ

r
.

Since θ must be acute, making θ big is equivalent to making sin θ big. Since
sin θ = (a/r) sinφ, we want to maximize sinφ.

A glance at Figure 10.3 shows that we can make φ a right angle, and therefore
the biggest possible value of sinφ is 1. Thus there are two points X that maximize
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θ. They are the points where the chord that passes through P and is perpendicular
to OP meets the circle.

X-7. Let f(x) = x+
√
1− x2. Find the smallest and largest values reached

by f(x) as x ranges over the interval −1 ≤ x ≤ 1.

Solution. Note that
√
1− x2 is never negative, so f(x) can’t be less than −1 on

our interval. Since f(x) = −1 when x = −1, the smallest value reached by f(x) is
−1.

Now look for the largest value of f(x). This largest value can’t be reached at a
negative x, so confine attention to 0 ≤ x ≤ 1. Since f(x) is positive on this interval,
f(x) is largest where f2(x) is largest. But

f2(x) = (x+
√

1− x2)2 = 1 + 2x
√

1− x2,

so it is enough to maximize 2x
√
1− x2, or equivalently to maximize 4x2(1− x2).

Let u = x2. We want to maximize 4u − 4u2 on the interval 0 ≤ u ≤ 1. Recall
that y = 4u−4u2 is a downward-facing parabola with vertex at u = 1/2, or complete
the square:

4u− 4u2 = 1− (2u− 1)2.

The right-hand side has maximum value 1 when 2u − 1 = 0. Now we retrace our
steps and conclude that the maximum value of f2(x) is 2, so the maximum value
of f(x) is

√
2.

Another way: For the maximum, we can confine attention to the interval 0 ≤ x ≤ 1.
Then x = cos θ for some θ between 0 and π/2, and

√
1− x2 = sin θ. We want to

maximize cos θ + sin θ. But

(cos θ + sin θ)2 = cos2 θ + 2 cos θ sin θ + sin2 θ = 1 + sin 2θ.

The largest value of 1 + sin 2θ is 2, reached when θ = π/4, so the largest value of
f(x) is

√
2.

X-8. Find the largest value and the smallest value taken on by the function√
16 + x4 − x2.

Solution. Rationalize the numerator:

√

16 + x4 − x2 =
(
√
16 + x4 − x2)(

√
16 + x4 + x2)√

16 + x4 + x2
=

16√
16 + x4 + x2

.

As |x| increases,
√
16 + x4 + x2 increases. So

√
16 + x4 + x2 is smallest when

x = 0, and therefore
√
16 + x4 − x2 reaches its maximum value of 4 when x = 0.

As |x| increases without bound,
√
16 + x4 + x2 also increases without bound,

and therefore
√
16 + x4−x2 decreases steadily toward 0. But it never reaches 0, and

therefore there is no such thing as the smallest value taken on by the function.
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X-9. Let f(x) = x2/(x2 + x+ 1). What values are taken on by f(x)?

Solution. If we use a graphing program to plot y = x2/(x2 + x + 1), we can with
some confidence read off the answer. But f(x) is not too complicated, so it’s worth
exploring algebraic approaches.

If x (= 0, we can divide “top” and “bottom” by x2. Let u = 1/x. Then

f(x) =
1

1 + 1
x + 1

x2

=
1

1 + u+ u2
.

Completing the square gives

1 + u+ u2 =

(

u−
1

2

)2

+
3

4
,

so the smallest value of 1 + u+ u2 is 3/4, reached when u = 1/2.
The only forbidden u is 0. As u ranges over the non-zero reals, 1+u+u2 takes

on all values greater than or equal to 3/4. (The value of 1+u+u2 at the forbidden
u = 0 is also taken on at u = −1.)

We conclude that as x ranges over the non-zero reals, f(x) ranges over the
interval 0 < x ≤ 4/3. Since f(0) = 0, the function f(x) ranges over the interval
0 ≤ y ≤ 4/3 as x ranges over the reals.

Another way: Since x2 + x + 1 is never 0, the equation y = x2/(x2 + x + 1) is
equivalent to x2 = y(x2 + x+ 1), that is, to (y − 1)x2 + yx+ y = 0.

Suppose that y (= 1. By the quadratic formula,

x =
−y ±

√

y2 − 4(y − 1)y

2(y − 1)
.

The discriminant 4y− 3y2 is non-negative if and only if 0 ≤ y ≤ 4/3. We conclude
that if y is any number in this interval other than 1, then there is at least one x
such that y = x2/(x2 + x + 1). And y = 1 isn’t exceptional, since y = 1 when
x = −1.

X-10. The numbers x and y range over the reals, subject to the constraint
x2 + 4y2 − 8x− 16y − 4 = 0. Find the smallest possible value of x.

Solution. Complete the squares:

x2 − 8x = (x− 4)2 − 42 and 4y2 − 8y = 4
(

(y − 2)2 − 22
)

.

Thus the constraint is equivalent to (x− 4)2 + 4(y − 2)2 = 36, and therefore (x, y)
moves over a standard ellipse shifted 4 units to the right and 2 units up. The
leftmost point on the standard ellipse x2 + 4y2 = 36 has x = −6, so the leftmost
point on the shifted ellipse has x = −2.

Another way: If we are in a non-geometric mood—and we should hardly ever be—
we can note that x reaches a mimimum precisely where x− 4 does. And from the



CHAPTER 10. MAXIMA AND MINIMA 307

equation (x− 4)2 = 36− 4(y− 2)2 we can see that (x− 4)2 can’t be larger than 36,
and is equal to 36 only when y = 2. The smallest x is less than 4 and satisfies the
equation (x − 4)2 = 36, so it is −2.

X-11. Find the maximum value taken on by 3x + 4y as (x, y) ranges over
all ordered pairs such that x2 + y2 ≤ 1.

Solution. We will be close to the answer as soon as we have a clear grasp of the
geometry. The points (x, y) with x2 + y2 ≤ 1 fill up the disk with center the origin
O and radius 1.

P

!

Figure 10.4: Maximizing 3x+ 4y on the Unit Disk

For any fixed k, 3x + 4y = k is the equation of a line with slope −3/4. As
k increases, the line moves upwards and to the right (see Figure 10.4). Thus the
largest k such that the line 3x + 4y = k meets the disk is the k for which the line
is tangent to x2 + y2 = 1 (and “above” it).

Let ! be this tangent line and P the point of tangency. Then the line OP is
perpendicular to !. Recall that if line ! has slopem (= 0, then the lines perpendicular
to ! have slope −1/m. The slope of ! is −3/4, so OP has slope 4/3.

If the x-coordinate of P is a then the y-coordinate is 4a/3. But P is on the circle,
so a2+16a2/9 = 1 and therefore a = 3/5, and P = (3/5, 4/5). But 3(3/5)+4(4/5) =
5, so the maximum of 3x+ 4y as (x, y) ranges over the disk is 5.

Another way: Give 3x + 4y some convenient positive value, say 1. We minimize
x2 + y2, that is,

x2 +
(1 − 3x)2

16
.

Simplify and complete the square. The minimum value of

(

5x− 3
5

)2
+ 16

25

16
is

1

25
.

So the circle tangent to the line 3x + 4y = 1 has radius 1/5. Now scale up by a
factor of 5: the positive k for which 3x+ 4y = k is tangent to x2 + y2 = 1 is 5.

Another way: The general point on the unit circle has coordinates

x = cos θ, y = sin θ
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for some θ between 0 and 2π. It follows that

3x+ 4y = 5

(

3

5
cos θ +

4

5
sin θ

)

.

Let φ be the angle between 0 and π/2 whose sine is 3/5. Then cosφ = 4/5, and
therefore

3x+ 4y = 5(sinφ cos θ + cosφ sin θ) = 5 sin(θ + φ).

Choose θ so that θ+φ = π/2. Then 5 sin(θ+φ) = 5, and no larger value is possible.

Another way: We present an algebraic solution that may look like magic. It uses
an important identity that can be checked by expanding both sides:

(a2 + b2)(x2 + y2) = (ax± by)2 + (ay ∓ bx)2.

Let a = 3 and b = 4. We want to make ax + by as large as possible subject to the
condition x2+ y2 ≤ 1. From the above identity, we can see that to make (ax+ by)2

big, we should scale so as to make x2 + y2 = 1—that makes the left-hand side as
big as possible—and then choose (ay − bx)2 as small as possible. There are x and
y such that x2 + y2 = 1 and ax − by = 0, so the maximum value of (ax + by)2 is
a2 + b2.

Comments. 1. The movement as k changes should be experienced kinesthetically.
With a picture of the disk and a moving long ruler, we can see and feel the maximum
k being reached just as we leave the disk behind, that is, at the point of tangency.

2. In the second solution, the quantity to be maximized and the constraint were
in a sense interchanged, and the problem was turned into a minimization problem.
This widely useful technique is sometimes called dualizing the problem.

3. The identity of the fourth solution is often called Bachet’s Identity, even though
Diophantus used the result more than 1350 years before Bachet. The identity is now
sometimes called Brahmagupta’s Identity, after the seventh-century mathematician
who worked with the more general identity

(a2 −Db2)(x2 −Dy2) = (ax±Dby)2 −D(ay ∓ bx)2.

Bachet’s Identity can be used to express integers as sums of squares. Let c be a
sum of two perfect squares, say c = a2 + b2, and let z = x2 + y2. The identity says
that cz is a sum of two squares. For example, 401 = 12 + 202 and 97 = 42 + 92.
Using Bachet’s Identity, we can express 401 · 97 as the sum of two squares in two
different ways.

4. Here is a seemingly more complicated but closely related problem: maximize
3x+4y given that x2+ y2 ≤ 2x+4y+6. By completing the squares we can rewrite
the condition as (x − 1)2 + (y − 2)2 ≤ 1. Let u = x − 1 and v = y − 2. Then
3x + 4y = 3u + 4v + 11. The maximum value of 3u + 4v subject to the condition
u2 + v2 ≤ 1 is 5, so the required maximum value is 16.
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X-12. Fourteen parallel blue lines are drawn across a standard 8.5 × 11
sheet of paper, dividing the sheet into 15 horizontal strips of equal height.
Then 22 parallel red lines are drawn, dividing the sheet into 23 horizontal
strips of equal height. Find the minimum distance between a blue line and
a red line.

Solution. The problem is not really two-dimensional. Imagine an 11-inch line seg-
ment, with 14 blue dots dividing the segment into 15 intervals of equal length, and
22 red dots . . . . And the line segment might as well be [0, 1]: we can scale up at
the end.

Then the blue dots are at s/15, where s ranges over the integers from 1 to 14,
while the red dots are at t/23, where t ranges over the integers from 1 to 22. To
find the minimum distance between a blue dot and a red dot, minimize

∣

∣

∣

∣

s

15
−

t

23

∣

∣

∣

∣

, that is,
|23s− 15t|
15 · 23

.

There are general methods for solving this kind of problem, but here the numbers
are small and we can see that |23s−15t| = 1 when s = 2 and t = 3. Since |23s−15t|
can’t be less than 1, the minimum distance between a blue line and a red line is
11/(15 · 23) inches.

X-13. Find the smallest number m such that x/(x2 + 3) ≤ m for all x.

Solution. We want the smallest m such that y = m acts as a “ceiling” on the graph
of y = x/(x2 + 3). This m is evidently positive, and the line y = m is tangent to
y = x/(x2+3). So the equation m = x/(x2+3) should have only one root, or more
precisely two coinciding roots. Rewrite the equation as

x2 −
x

m
+ 3 = 0.

The product of the roots is 3 and their sum is 1/m. So if the roots coincide then
they are each

√
3, and m = 1/(2

√
3).

Another way: Let x =
√
3 tan θ. (Any real x can be represented this way.) Using

the identity tan2 θ + 1 = sec2 θ, we get

x

x2 + 3
=

√
3 tan θ

3 sec2 θ
=

sin θ cos θ√
3

=
sin 2θ

2
√
3
.

The maximum value attained by sin 2θ is 1, so m = /(2
√
3).

Comment. Look instead at (x2 + 3)/x and find its minimum as x ranges over the
positive reals. For a solution of this version of the problem, see X-19.

X-14. Find the smallest value of xy + yz + zx given that x2 + y2 + z2 = 1.
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Solution. Any square is non-negative, so (x+ y + z)2 ≥ 0. Expand the square:

(x+ y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx.

Since x2 + y2 + z2 = 1, we conclude that 1 + 2xy + 2yz + 2zx ≥ 0, and therefore
xy + yz + zx can never be less than −1/2.

To show that xy + yz + zx can actually be −1/2, look back on the calculation
and note that there is equality when x+ y+ z = 0. So we need to show that there
are numbers x, y, and z such that

x2 + y2 + z2 = 1 and x+ y + z = 0.

This is evident from the geometry. The first equation is the equation of a sphere
with center the origin and radius 1, while the second is the equation of a plane
through the origin. The sphere and the plane meet at many places.

Alternately, we can find explicit x, y, and z that satisfy both equations. Let a,
b, and c be three numbers, not all 0 but with sum 0, like 1, −1, and 0. Divide each
by

√
a2 + b2 + c2 and call the results x, y, and z.

X-15. Let a, b, and c be positive. Find the smallest value of ax + by as
(x, y) travels over the first-quadrant part of the curve xy = c.

Solution. Equivalently, minimize (ax+ by)2 under the constraint. Since

(ax+ by)2 = (ax− by)2 + 4abxy = (ax − by)2 + 4abc,

minimizing (ax+ by)2 is equivalent to minimizing (ax− by)2.
The line ax = by passes through the origin and has positive slope, so it meets

the hyperbola xy = c. Thus (ax − by)2 can be 0 on the hyperbola. The minimum
value of ax+ by is therefore 2

√
abc.

Another way: Let u = ax and v = by. We want to minimize u+ v as (u, v) travels
over the first-quadrant part of the hyperbola uv = abc. If we now use the preceding
argument, the algebra is marginally simpler-looking.

The real reason for the change of variable is to enlist the aid of symmetry. Sketch
the first-quadrant part of the hyperbola uv = abc, and draw the line u+ v = k for
various k. The smallest k such that u + v = k meets the hyperbola is the k for
which the line is tangent to the hyperbola. By symmetry, tangency happens when
u = v = k/2. But then (k/2)2 = abc, so the minimum is 2

√
abc.

Comment. We could note that y = c/x and minimize ax+ bc/x. Since

ax+
bc

x
=

(

√
a
√
x−

√
bc√
x

)2

+ 2
√
abc,

the minimum value is 2
√
abc. This is a variant of the first solution, but it looks

uglier and is therefore less useful.
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X-16. Let f(x) = (2x2 − 8x+ 125)/(2x2 − 8x+ 16). Find the biggest and
smallest integer values taken on by f(x) as x ranges over the reals.

Solution. Do the division:

f(x) =
2x2 − 8x+ 125

2x2 − 8x+ 16
= 1 +

99

2x2 − 8x+ 16
.

To make 99/(2x2 − 8x+ 16) big, we need to make y small, where

y = 2x2 − 8x+ 16 = 2
(

(x − 2)2 + 4
)

.

The minimum value of y is 8, attained when x = 2. But 99/8 is not an integer.
As x moves away from 2, 99/y decreases away from 12.375. The biggest integer

value of 99/y is 12, so the biggest integer value of f(x) is 13.
Since 2x2 − 8x+ 16 has minimum value 8 and increases without bound, there

is an a such that 2a2 − 8a + 16 = 99, so f(a) = 2. Since f(x) can’t be an integer
when 2x2 − 8x+ 16 > 99, the smallest integer value taken on by f(x) is 2.

Another way: Use a graphing program or a graphing calculator to plot the given
function. The biggest and smallest integer values can be read exactly from the
display. This strategy works for a wide variety of functions.

X-17. Let M be the largest value of
√

x2 + y2, and m the smallest value,
given that x2 − 4x+ y2 − 2y + 4 = 0. Find M −m.

O

F

Figure 10.5: Points Far and Near

Solution. Interpret the problem geometrically. First complete the squares:

x2 − 4x+ y2 − 2y + 4 = 0 if and only if (x− 2)2 + (y − 1)2 = 1.

So (x, y) travels around the circle of Figure 10.5. We want to maximize and mini-
mize

√

x2 + y2, the distance of (x, y) from the origin O.
Let F be the point furthest from O. Line OF is perpendicular to the circle and

therefore passes through the center of the circle, and also through the point on the
circle nearest to O. It follows that M −m is the diameter, namely 2.
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Comment. It’s not hard to find the coordinates of the near and far points. The line
that joins the origin to the center of the circle has equation y = x/2. Substitute 2y
for x in the equation of the circle and solve. But by using the geometry we didn’t
need to compute at all.

X-18. A curve has equation x4 + y4 = x2 + y2. Find the highest point on
the curve.

Solution. Complete the squares and rewrite the equation as

(

x2 −
1

2

)2

+

(

y2 −
1

2

)2

=
1

2
.

There are y greater than 1/
√
2 that satisfy the equation. So to make y as big

as possible, we make y > 1/
√
2 and y2 − 1/2 as big as possible. To do that, set

x2 − 1/2 = 0. The biggest value of y2 − 1/2 is thus 1/
√
2, so the maximum value

of y is
√

1/2 +
√

1/2.

X-19. (a) Show that if u and v are non-negative, then

u+ v

2
≥

√
uv,

with equality only when u = v.

(b) Let c be a positive constant. Use the inequality of part (a) to find the
smallest value taken on by x+ c/x as x ranges over the positive reals.

Solution. (a) The desired result can be rewritten as

u− 2
√
u
√
v + v ≥ 0, or equivalently (

√
u−

√
v)2 ≥ 0.

But this last inequality is clear, for any square is non-negative. And equality can
only happen when

√
u−

√
v = 0, that is, when u = v.

(b) Let u = x and v = c/x. By the inequality of part (a), if x is positive then
(

x + c/x
)/

2 ≥
√
c, with equality only when x = c/x. So x + c/x ≥ 2

√
c for all

positive x, with equality only when x =
√
c.

Comment. The inequality of part (a) is a special case of a useful result called the
Arithmetic Mean–Geometric Mean Inequality. It asserts that if u1, u2, . . . , un are
non-negative then

u1 + u2 + · · ·+ un

n
≥ (u1u2 · · ·un)

1/n,

with equality only when all the ui are equal. Many of the “max/min” problems in
first-year calculus books can be solved by using the above inequality instead of the
derivative.
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X-20. Find the points on the curve x4 + y4 = 2x2 + 2y2 which are furthest
from the origin.

Solution. Note the symmetry between x and y: (a, b) is on the curve if and only
if (b, a) is. So the curve is symmetrical about the line y = x. The curve is also
symmetrical about x+ y = 0 and about the coordinate axes.

We look for (x, y) on the curve such that
√

x2 + y2, or equivalently x2 + y2, is
as large as possible. Let r be the largest radius such that the circle x2 + y2 = r2

meets our curve. We want to find the points where it meets our curve.
It is almost clear that this happens when y = ±x. When we substitute ±x for

y in the equation of the curve, we get x = ±
√
2, so there are four points furthest

from the origin, (
√
2,±

√
2) and (−

√
2,±

√
2).

It is reasonable, particularly when there is no picture, to wonder whether the
maximum really does occur when y = ±x, so let’s do the details. Complete the
squares:

(

x2 − 1
)2

+
(

y2 − 1
)2

= 2.

Let u = x2 − 1 and v = y2 − 1. We want to make x2 + y2 as large as possible, or
equivalently to make u+v as large as possible, subject to the condition u2+v2 = 2.

Draw the circle u2 + v2 = 2, and a few lines with equations of shape u+ v = k.
As k increases, the line u + v = k moves in a North–East direction. By using
geometric reasoning close to that in X-11, we conclude that the maximum value of
k consistent with u2+ v2 = 2 occurs when u+ v = k is tangent to u2+ v2 = 2, that
is when u = v = 1.

X-21. Find all real a such that the roots of x2 +(2a− 1)x+3a = 0 are real
and the sum of their squares is as small as possible.

Solution. The discriminant 4a2 − 16a+ 1 is negative only when

4−
√
15

2
< a <

4 +
√
15

2
,

so the roots are real unless a is in this interval.
Let p and q be the roots. Then p+ q = −2a+ 1 and pq = 3a, and therefore

p2 + q2 = (p+ q)2 − 2pq = 4a2 − 10a+ 1

(or compute the roots, then square and add).
Let S(a) = 4a2 − 10a+ 1. Complete the square:

S(a) = 4

(

a−
5

4

)2

−
21

4
.

Thus S(a) increases symmetrically as the distance of a from 5/4 increases. The
place closest to 5/4 at which the roots are real is (4 −

√
15)/2.
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X-22. At a price of $1.50 per cup, a convenience store sells 1000 cups of
Burpee carbonated drink each week. For each 1 cent drop in price, it could
sell 24 more cups per week. The ingredients for a cup of Burpee cost the
store 2 cents, and the cup itself an additional 3 cents. At what price does
the store maximize its weekly profit from Burpee sales?

Solution. We can experiment with a calculator. At the $1.50 price, the profit is
1000 ·145 cents. If the price drops to $1.49, the store sells 1024 cups, and the profit
is 1024 · 144. At $1.48, the profit is 1048 · 143, and so on. Note that for a while
profit increases as price drops. After some tedium we can find the best price.

The process can be automated. Suppose the current price is 150 − x cents.
So the store sells 1000 + 24x cups. Drop the price by 1 cent. The profit on these
1000 + 24x cups drops by 1000 + 24x cents. But 24 more cups are sold, at a profit
of (150− x− 1)− 5 cents each. So the net “increase” in profit is

24(144− x)− (1000 + 24x), or more simply 2456− 48x.

As long as 2456 > 48x, it pays to drop the price by a penny. Since 2456/48 is about
51.16, the optimal price is 98 cents.

Another way: Let P (x) be the weekly profit if the price is x cents less than $1.50.
The profit per cup is 150− 5− x, and 1000 + 24x cups are sold, so

P (x) = (1000 + 24x)(145− x) = 145000 + 2480x− 24x2.

To maximize P (x), we maximize 2480− 24x2.
The curve y = 2480− 24x2 is a downward-facing parabola that crosses the x-

axis at x = 0 and at x = 2480/24. By symmetry, the highest point of the parabola
is at x = 1240/24, that is, at x ≈ 51.67. But price has to be an integer. The
function 2480− 24x2 is symmetrical about x = 1240/24, and decreases as x moves
away from 1240/24. So the best x is 52, the nearest integer to 1240/24. A cup of
Burpee should be priced at 98 cents.

X-23. Find the maximum value reached by xy as (x, y) travels around the
ellipse x2/9 + y2/4 = 1.

Solution. Since xy is negative in the second and fourth quadrants, we needn’t look
there. Also, neither xy nor x2/9 + y2/4 changes if we change the sign of both x
and y, so we can work in the first quadrant: the results transfer automatically to
the third quadrant.

Imagine graphing the curves xy = k, where k is positive. We get a family of
hyperbolas. As k increases, the hyperbolas recede from the origin. We want the
largest k such that the hyperbola xy = k meets the ellipse. For that largest k, the
hyperbola and the ellipse are tangent to each other.

Substitute k/x for y in the equation of the ellipse and simplify. We get

4x4 − 36x2 + 9k2 = 0.
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If the discriminant 362 − 144k2 is positive, there are two positive values of x2, and
if the discriminant is negative there are no real values of x2. The transition point
occurs when the discriminant is 0. There is then a single intersection point, or
more accurately two coinciding ones, that is, tangency. From 362 − 144k2 = 0 we
conclude that k = 3.

Another way: Let x = 3u and y = 2v. We want to maximize xy, that is, 6uv,
subject to the condition u2 + v2 = 1. Now as before look at hyperbolas 6uv = k
as k increases. It is obvious from the symmetry that the largest value of 6uv is
reached when u = v = 1/

√
2, so the maximum value is 3.

Another way: Since x2/9 + y2/4 = 1, we can let x = 3 cos θ and y = 2 sin θ. Then
xy = 6 cos θ sin θ = 3 sin 2θ. But 3 sin 2θ reaches a maximum when sin 2θ = 1.

Comment. The second way is much nicer than the first! The ellipse didn’t have
enough symmetry for our taste, so by a change of variable we forced additional
symmetry. The third way indirectly also changes the ellipse to a circle.

The second way is best, but there are many other approaches. We can maximize
x2y2. Let u = x2/9 and v = y2/4. The ellipse turns into a line segment. Or else
minimize x2/9 + y2/4 subject to say xy = 1, then rescale.

X-24. (a) Points P and Q are chosen on the curve x2 + 4y2 = 1 in such a
way that the distance PQ is as large as possible. Find that distance. (b)
Do the same calculation for the curve x4 + 16y4 = 1.

Solution. (a) The curve x2 + 4y2 = 1 is an ellipse that meets the x-axis at (±1, 0)
and the y-axis at (0,±1/2). It is obvious that the two points farthest apart are
(1, 0) and (−1, 0), so the maximum distance is 2. Is it really obvious? Only if
ellipses look like their usual pictures. In fact, book representations of ellipses are
often wrong. So to be certain we work a little more.

The problem is about two points P and Q. First we get rid of one of them.
Let P and Q be two points on the ellipse, and let O be the origin. Without loss of
generality we may assume that OP ≥ OQ. Let P ′ be the reflection of P across the
origin. Then PP ′ ≥ PQ. So we need only find a point P that is as far from the
origin as possible and then let Q = P ′.

Let P = (x, y). We want to maximize x2 + y2 given that x2 + 4y2 = 1. But

x2 + y2 = (x2 + 4y2)− 3y2 = 1− 3y2,

and 1− 3y2 reaches a maximum when y = 0. Thus the largest achievable distance
is indeed 2.

(b) The curve x4 + 16y4 = 1 looks somewhat like an ellipse, and meets the axes
exactly where x2 + 4y2 = 1 does. But the maximum distance is not 2. We can
argue exactly as in (a) that it is enough to find a point P at maximum distance
from the origin. We now maximize x2 + y2 given that x4 + 16y4 = 1.

Let x2 = u and 4y2 = v. We want to maximize u+ v/4 given that u2 + v2 = 1.
This is just Problem X-11 with different numbers, and any of the four solutions of
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that problem works. For example, we can argue that we need to find k > 0 such
that the line u+ v/4 = k is tangent to the circle u2 + v2 = 1.

Let R be the point of tangency. The line v = 4(k − u) has slope −4. The line
joining the origin to R is perpendicular to the tangent line, so has slope 1/4, and
therefore equation v = u/4. This line meets u2 + v2 = 1 at (4/

√
17, 1/

√
17), so

k =
√
17/4. Thus the largest distance between points on our curve is

√
17/2, a

little more than 2.

Comment. Consider the curve |x|e + |2y|e = 1, where e is a positive constant. If
e = 2 we get the ellipse of (a), and if e = 4 the curve of (b). It turns out that if
e ≤ 2, then the largest distance between points on the curve is 2, but if e > 2, then
the largest distance is greater than 2. The exponent 2 is right on the boundary.
So maybe the fact that 2 is the largest distance in the ellipse isn’t so obvious after
all!

X-25. Let %ABC have area 1. Divide it into three parts by choosing a
point P between B and C and drawing lines through P parallel to AB and
AC as in Figure 10.6. Show that the area of one of these parts is at least
4/9.

Solution. It is obvious that at least one part has area 1/3 or more, but getting to
4/9 takes some work. Let BC = a and BP = xa. Then PC = (1 − x)a. Each of
the two smaller triangles in Figure 10.6 is similar to %ABC.

A

B C
P

Figure 10.6: Dividing a Triangle into Three Parts

The triangle with base BP is obtained by scaling %ABC by the scaling factor
x. But multiplying all lengths by x multiplies area by x2, so the triangle with base
BP has area x2. Similarly, the triangle with base PC has area (1− x)2.

If x2 ≥ 4/9 or if (1 − x)2 ≥ 4/9, we are finished. So suppose that x < 2/3 and
1 − x < 2/3, or equivalently 1/3 < x < 2/3. The parallelogram in the picture has
area 1−

(

x2 + (1− x)2
)

, which simplifies to 2x− 2x2.
Look at the parabola y = 2x − 2x2. Its vertex is at x = 1/2, so 2x − 2x2

decreases steadily as x moves away from 1/2. Note that 2x − 2x2 = 4/9 when
x = 1/3 and when x = 2/3. It follows that 2x − 2x2 > 4/9 when 1/3 < x < 2/3.
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So if each small triangle has area less than 4/9, then the parallelogram must have
area bigger than 4/9.

X-26. Let A = (0, a). Find the shortest possible distance between A and Z
as Z roams over the parabola y = x2/2.

Solution. Let Z = (x, y). The distance from A to Z is
√

x2 + (y − a)2. Choose
Z so as to minimize this distance, or equivalently to minimize x2 + (y − a)2, the
square of the distance. Since x2 = 2y, we minimize f(y), where f(y) = 2y+(y−a)2.
Complete the square:

f(y) = (y − (a− 1))2 + 2a− 1.

But (y − (a− 1))2 can’t be negative. So f(y) reaches a minimum when y = a− 1,
and the minimum value is 2a− 1. Thus the required minimum distance is

√
2a− 1.

Or is it? Let a = 0. The minimum distance is 0, since (0, 0) is on the parabola.
The formula just obtained predicts that the minimum distance is

√
−1. And even

a casual sketch (which is how a solution should start) shows that at least when a
is negative the minimum distance is |a|. Something went awry.

Note that y = x2/2, so y ≥ 0. If a − 1 ≥ 0, we can indeed find y ≥ 0 such
that y = a − 1, and the minimum distance is

√
2a− 1. But if a < 1, the smallest

value of (y − (a− 1))2 is obtained by setting y = 0, and therefore in that case the
minimum distance is |a|.

X-27. The circles of Figure 10.7 have radius 3 and 4, the distance between
their centers is 5, and they meet at A and B. A line drawn through A meets

A

B

P

Q

Figure 10.7: A Problem of Clavius

the smaller circle at P and the larger circle at Q, where A is between P and
Q. Find the greatest possible length of PQ.

Solution. Look at ∠APB as P travels from A to B on the outer arc of the smaller
circle. Since ∠APB is the angle subtended by chord AB, it is independent of P .
Similarly, ∠AQB is independent of Q. So even though the size of %PBQ varies,
its shape doesn’t.
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Thus PQ is biggest when PB is biggest. That happens when PB is a diameter
of the smaller circle. Since PB and QB are maximized simultaneously, QB is a
diameter of the larger circle.

Let X be the center of the smaller circle and Y the center of the larger circle.
If PB (and therefore QB) are diameters, then X bisects PB and Y bisects QB,
so XY is half as long as PQ. But XY = 5, so PQ = 10. Note that as long as
the circles meet, their radii are irrelevant: only the distance between their centers
matters.

Comment. The sixteenth-century mathematician Clavius posed and solved this
problem. Clavius is best known for his work on calendar reform that produced
our current (Gregorian) calendar.

There are many variations on the same theme. For example, let two circles
meet at A and B, and suppose that PB and QB are diameters of the circles. Show
that PQ passes through A.

X-28. The Pyramid of Khafre originally had height 143.5 meters and a
square base ABCD of side 215.25m. A long-ago ant travelled from A to C
along the pyramid. If she took the shortest possible path, what height did
she reach?

Solution. We solve the problem for a perfect pyramid of height h and base length
b, partly because the ant did the Pyramid of Khufu the next day, but also because
it is easier than with numbers.

Let O be the top of the pyramid. Imagine that the pyramid is just a cardboard
hat. Slice out sides OCD and ODA, flatten what’s left, and draw line AC. We
end up with Figure 10.8. The shortest path from A to C is along line AC of the

A

B

C

O

P

Figure 10.8: The Ant and the Pyramid

flattened pyramid, and P is the highest point reached.
Drop a perpendicular from O to the center of the base of the pyramid and use

the Pythagorean Theorem to find the slant height:

OA = OB = OC =
√

h2 + b2/2.
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Let θ = ∠OBA. By dropping a perpendicular from O to the midpoint of AB, we
can see that cos θ = (b/2)/

√

h2 + b2/2. But since ∠APB is a right angle, we have
PB = b cos θ.

Let x be the height of P off the ground. By using similar triangles, we can see
that x/h = PB/OB. Putting everything together, we conclude that

x =
b2h

2h2 + b2
.

For the values of h and b in the Pyramid of Khafre, x is about 76 meters.

Comment. In the same spirit, place the ant on the top edge of a conical drinking
cup of depth h whose top is a circle of radius r. The ant wants to walk to the
diametrically opposite point. Let s =

√
h2 + r2. The length of the shortest walk is

2s sin(πr/2s).

X-29. Call a line nice if it crosses the positive x and y axes, and the x and
y-intercepts, together with the origin, form a triangle of area 1. Find all
numbers w such that (1, w) lies on exactly one nice line.

Solution. We solve the problem in two ways, one for left-brain people, the other
for the right-brained. The first solution is harder but maybe more interesting. Let
P = (1, w).

Suppose first that w ≤ 0. Draw the line ! through P and the origin, then
rotate ! clockwise around P . The area of the triangle formed by the origin and the
intercepts increases steadily, so there is a unique position at which the area reaches
1, and therefore exactly one nice line through P .

Suppose now that w > 0. Take a line through P with negative slope close to
0, and rotate it clockwise about P until it is nearly vertical. Initially, the triangle
formed by the origin and the intercepts has large area, and at the end it again has
large area. Somewhere in between, the area reaches a minimum. If that minimum
is greater than 1, there can’t be a nice line through P . If the minimum is less than
1, then there is more than one nice line through P , for area must have been 1 twice.
We conclude that there is a unique nice line if and only if the minimum area is 1.

We solve the minimization problem geometrically. Refer to Figure 10.9. Reflect
%PAB in the line AP , and %PCD in the line PC. The two reflected triangles
cover rectangle OAPC, and possibly more. So the area of %OBD is at least twice
the area of the rectangle, with equality when AB = OA. The minimum area is 1 if
and only if rectangle OAPC has area 1/2, so w = 1/2.
Another way: Let ! be the line y = mx+ b. The y and x-intercepts of ! are b and
−b/m. We want both of these to be positive, and we want the area of the triangle
formed by the intercepts and the origin to be 1. That triangle has area −b2/2m,
and therefore ! has equation (b2/2)x − b + y = 0. Thus ! passes through (1, w) if
and only if b2/2− b+ w = 0.

There is single nice line if and only if exactly one positive b satisfies the preceding
equation. The equation has roots 1 ±

√
1− 2w. So there is exactly one positive

solution (i) when w = 1/2 and (ii) when w ≤ 0.
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A

B

C DO

P

Figure 10.9: Nice Lines

Comment. A simpler problem with a similar theme is to ask for the triangle of
smallest area whose sides are the positive axes and a line through, say, (3, 2). This
is a standard first-year calculus problem, but the reflection argument used above
gives a purely geometric solution.

X-30. Jane started to cycle eastward at 5 meters per second along a country
road. At the instant she started, her old dog Spot was 30 meters North and
40 meters East of Jane. After a quick computation, Spot chose a suitable
line of travel, and running at full speed just managed to intercept Jane.
Spot is smart but slow. If it were any slower there is no way it could have
intercepted Jane. How long did it take for Spot to reach Jane?

Solution. Suppose that when the story begins Jane is at A and Spot is at B. Let
C be the point where Spot intercepts Jane, and D the point on the road due South
of B. Then AD = 40 and BD = 30. (Please see Figure 10.10.) Let a = BC and
b = AC.

A

B

C
D

30

40

Figure 10.10: Run Spot Run

The key fact is that if Spot were any slower it couldn’t have caught Jane. Let
α = ∠BAC and let β = ∠ABC. Spot needs to choose β so that a/b is as small as
possible. By the Sine Law,

sinα

a
=

sinβ

b
, and therefore

a

b
=

sinα

sinβ
.
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To minimize a/b, Spot needs to maximize sinβ. Thus β = 90◦. By the Pythagorean
Theorem, AB = 50, and therefore sinα = 3/5. It follows that a/b = 3/5, and
therefore Spot’s speed is 3. Since a = 50 tanα = 37.5, Spot ran for 12.5 seconds.

Comment. This old standard first appeared in World War I. The setting was mil-
itary, with one warship intercepting another. Once upon a time, North American
children’s first reading books featured Dick, Jane, and their dog Spot. This problem
was worded in affectionate memory of the Dick and Jane series.

X-31. A triangle has area 1. Find its sides a, b, and c, given that a ≤ b ≤ c
and b is as small as possible.

Solution. Let the triangle have vertices A, B, and C, with as usual BC = a,
AC = b, and AB = c. We show first that ∠ACB must be 90◦ by showing it can
be neither less than nor bigger than 90◦.

Suppose that ∠ACB < 90◦. Imagine that legs CA and CB are hinged at C,
and increase ∠ACB to 90◦. We now have a triangle of area greater than 1 whose
two smallest sides are a and b. By multiplying all sides by a suitable scale factor
s, where s < 1, we get a triangle of area 1 whose two smallest sides are sa and sb.
Since sb < b, this contradicts the fact that b is as small as possible.

Suppose now that ∠ACB > 90◦. When we decrease ∠ACB to 90◦, the new
AB is still the longest side, and a and b are still the two smallest sides, but the
area is now greater than 1. We reach a contradiction exactly as in the preceding
paragraph.

Thus %ABC is right-angled. It has area ab/2, so ab = 2. Because a ≤ b, we
have b ≥

√
2. But the right-angled isosceles triangle with legs

√
2 has area 1, so

since b is as small as possible, b =
√
2. It follows that a =

√
2 and c = 2.

X-32. A 30-meter wide river flows East–West. Anna lives on the South side,
150 meters from the river. Bea lives on the North side, 60 meters from the
river and 200 meters to the East of Anna’s house. They build a footbridge
across the river and perpendicular to it, in a way that minimizes the walking
distance between their houses. Find that distance.

Solution. It is possible to solve the problem by using the calculus, but geometry
is easier and more informative. Please see Figure 10.11. Let the North end of the
bridge be at P , the South end at Q, let Anna’s house be at A, and Bea’s house
at B. Finally, let C be the fourth corner of the parallelogram whose other three
corners are B, P , and Q.

Assume that on land one can walk freely in any direction. Then the travel
distance from A to B is AQ + PB + 30. To minimize this distance, we minimize
AQ + PB. But note that PB = QC, so we must select Q so as to minimize
AQ + QC. It is clear that Q should be on the line AC. In that case, AC is the
hypotenuse of a right-angled triangle with legs 200 and 150+ 60, so AC has length
√

(200)2 + (210)2, that is, 290. It follows that the minimal path has length 320.
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A

B

CP

Q

Figure 10.11: The Footbridge

Another way: Push the land North of the river southward, shrinking the river to
zero, and draw the straight-line best path. Let this path meet the shrunken river
at Q. Then push the land back up, making a bridge at Q. The final computation
is the same as in the first solution.

X-33. Find all pairs (x, y) of real numbers such that there is a right-angled
triangle with perimeter x and area y.

Solution. We can quickly almost find the relationship between x and y by using a
simple but powerful idea called dimensional analysis.

Let k be the minimum perimeter among all triangles with area 1. Then for
any p ≥ k, there is a triangle with area 1 and perimeter p. Scale linear dimensions
by the scale factor

√
y to make the area y. Then perimeter scales to k

√
y, and

therefore the condition we are looking for has the form x ≥ k
√
y, or equivalently

y ≤ x2/k2.
The required pairs (x, y) are therefore all points to the right of the y-axis, above

the x-axis, and on or below a certain parabola. The only remaining problem is to
find k.

There is a right-angled triangle with area 1 and perimeter p if and only if there
are positive reals u and v, the legs of the triangle, such that

uv = 2 and u+ v +
√

u2 + v2 = p.

To find k, note that it is the smallest p for which there are u and v satisfying the
above equations, so it is the minimum value of u + v +

√
u2 + v2 as (u, v) ranges

over the first-quadrant part of the hyperbola uv = 2.
To minimize p, it is enough to minimize either u + v or if we prefer u2 + v2,

since u2 + v2 = (u+ v)2 − 2uv = (u+ v)2 − 4. But

u2 + v2 = (u− v)2 + 4uv = (u− v)2 + 8,

so the minimum is reached when u = v. In that case, u =
√
2. The smallest possible

perimeter k is therefore 2
√
2 + 2.
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There are many other approaches. For example, let w =
√
u2 + v2, and let θ

be the angle opposite one of the legs. Then the area is (w2 sin θ cos θ)/2. But that
area is 1, so w2 sin 2θ = 4. To minimize w, make sin 2θ as big as possible, namely
1.

Comment. The calculation goes through almost as easily if we use y as the area
rather than setting it equal to 1. We chose the dimensional analysis approach to
show how much information one can get almost for free.

X-34. Find the smallest value of x2 + y2 + z2 given that x+ y + z = 1.

Solution. In order to get some insight, look at the analogous problem in two vari-
ables: minimize x2 + y2, given that x + y = 1. Draw the line x + y = 1. We want
to find a point (x, y) on this line such that x2 + y2, or equivalently

√

x2 + y2, is
as small as possible. So we want to find the point on the line x + y = 1 which is
closest to the origin. It is clear from the geometry that x = y = 1/2, and therefore
the minimum value of x2 + y2 is 1/2.

The idea extends to three variables. We can assign coordinates (x, y, z) to points
in three-dimensional space. If we do, the equation x + y + z = 1 is the equation
of a plane, and

√

x2 + y2 + z2 is the distance from (x, y, z) to the origin. Once
we are reasonably familiar with the geometry, it becomes intuitively clear that the
point on the plane x+ y + z = 1 which is nearest the origin is (1/3, 1/3, 1/3), and
therefore the minimum value of x2 + y2 + z2 is 1/3.

We now check that the intuition is corrrect. To bring out the symmetry, let

x =
1

3
+ u, y =

1

3
+ v, z =

1

3
+ w.

We want to minimize

(

1

3
+ u

)2

+

(

1

3
+ v

)2

+

(

1

3
+ w

)2

subject to the condition u+ v+w = 0. Expand and simplify. The expression to be
minimized becomes

1

3
+ u2 + v2 + w2,

which is smallest when u = v = w = 0.

Comment. The same argument shows that the minimum value of

x2
1 + x2

2 + · · ·+ x2
n given x1 + x2 + · · ·+ xn = 1

is reached when all the xi are 1/n.

X-35. An isosceles right triangle has legs of length 2. Find the length of
the shortest line segment that cuts the triangle into two parts of equal area.
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x

x

y

y

Figure 10.12: Cutting a Triangle in Half

Solution. Any cut divides the triangle into a triangle and a quadrilateral, or maybe
two triangles. There are two cases: (i) the cut joins a point on one leg to a point
on the other leg, as in the left triangle of Figure 10.12, or (ii) the cut joins a point
on a leg to a point on the hypotenuse, as in the right triangle. We deal with both
cases, but it is intuitively clear that the shortest cut is of type (ii). Let x and y be
as in the pictures.

The original triangle has area 2, so in each case we must produce a triangle
of area 1. In case (i), the area is xy/2, so we minimize x2 + y2, the square of the
length of the cut, subject to xy/2 = 1. Note that

x2 + y2 = (x− y)2 + 2xy = (x− y)2 + 4,

so
√

x2 + y2 takes on its minimum value of 2 when x = y. (Case (i) is the same as
Problem X-2.)

Now examine case (ii). The triangle has base y and height x sin 45◦, so it has
area xy/(2

√
2). Thus xy = 2

√
2.

By the Cosine Law, the square of the length of the cut is

x2 + y2 − 2xy cos 45◦, that is, (x − y)2 + 2xy − 2xy cos 45◦.

Since xy = 2
√
2, the cut is minimized by taking x = y = 4

√
8. That makes the

length of the cut 2
√√

2− 1, much cheaper than the cheapest cut of case (i).

Comment. With minor modifications the method extends to any triangle. One
could for example look at the 30–60–90 triangle.



Chapter 11

Quickies

Introduction

These problems are mostly of a more elementary nature than the problems
in other chapters. But what really distinguishes them is that the solutions
are short, requiring only one idea and not much computation.

Problems and Solutions

XI-1. In rectangle ABCD of Figure 11.1, AB = 12, BC = 5, and AP = 9.
Which of the shaded rectangles has the greater area?

A B

CD

P

Figure 11.1: Comparing Rectangles

Solution. We could compute the areas by using the machinery of similar triangles.
But a look at Figure 11.1 is enough. The shaded rectangle on the left is%ACD with
two “white” triangles cut out. The shaded rectangle on the right is %CAB with
two white triangles cut out. The parts cut out have the same area, and therefore
so do the rectangles.

325



CHAPTER 11. QUICKIES 326

XI-2. Find a simple expression for a/b, where

a = 1 + 2 + 4 + · · ·+ 2100 and

b = 1 +
1

2
+

1

4
+ · · ·+

1

2100
.

Solution. It is possible to sum the two geometric series, then find the ratio of the
sums and simplify. But it is better to look before using formulas. Note that 2100b
is equal to a (written backwards). Thus a/b = 2100.

XI-3. Twenty people get seated at random on the twenty chairs around a
circular banquet table. Find the probability that Ali and Ben are next to
each other.

Solution. Paint a chair purple. Relative to the purple chair, there are 20 places for
Ali to sit, and for each of these there are 19 places for Ben to sit, for a total of
20 · 19 equally likely ways. Now count the number of ways that Ali and Ben can
be neighbours. Again, there are 20 places for Ali to sit, and for each of these there
are 2 ways for Ben to sit beside her, a total of 20 · 2. So the required probability is
(20 · 2)/(20 · 19).

There is a simpler argument that doesn’t require painting a chair. Ask Ali to
sit down first. There remain 19 places for Ben to sit, and 2 of these are next to Ali,
so the probability is 2/19.

XI-4. One sheet of a newspaper section contains pages 9, 10, 27, and 28.
How many sheets does the newspaper section have?

Solution. There are just as many pages after page 28 as there are before page 9, so
there are 28 + 8 pages in the section. Since there are 4 pages to a sheet, there are
9 sheets in the section.

XI-5. A 20 cm by 20 cm cake is 7 cm high. It has smooth icing on top and
fruit glaze on the sides. Divide the cake among 5 people so that cake, icing,
and glaze are all divided equally. Don’t use a potato masher.

Solution. Put five equally spaced marks around the perimeter of the top of the
cake, and slice with the slices meeting at the center of the top of the cake, as in
Figure 11. It is clear that everyone gets equal amounts of fruit glaze. We show that
everyone gets equal amounts of icing, and therefore of cake.

Any slice is either a triangle of base 16 and height 10, or, if it goes around a
corner, can be decomposed into two triangles of height 10 whose bases add up to
16. Thus all slices have equal top area.

Comment. The same idea works for any regular polygon and any number of people.
Any triangular cake can also be divided fairly into any number of pieces. Equally-
spaced marks are placed around the perimeter, and these are joined to the center
of the incircle of the triangle, that is, the point where the angle bisectors meet.
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Figure 11.2: Dividing a Square Cake

XI-6. Local time in St. John’s, Newfoundland is 41
2 hours ahead of time in

Vancouver, British Columbia. A non-stop flight left Vancouver at 7:00 a.m.
local time, and arrived at St. John’s at 6:40 p.m. local time. After refueling
for an hour, the plane headed back to Vancouver, arriving at 11:20 p.m.
Because of tail winds, the trip to St. John’s took an hour less than the trip
back. What was the flight time to St. John’s?

Solution. Since the pilot is going back to Vancouver, she might as well leave her
watch on Vancouver time. Total elapsed time was 16:20 hours, so 15:20 hours were
spent flying. Half of that is 7:40. The flight from Vancouver took an hour less than
the flight back, so it took 7:10 hours.

XI-7. There will be either five or six people at a meeting. We need to
pre-cut a pizza into slices, not necessarily all the same size, so that in either
case the pizza can be shared equally. This can be done by cutting the pizza
into 30 equal slices. Can we get by with fewer than 30 slices?

Solution. Cut the pizza into 6 equal slices, and divide one of these into 5 equal
slices, for a total of 10. If there are five people, each gets a big slice and a small
slice. If there are six, five get big slices, and one gets 5 small slices.

Comment. It is clear that we can’t get by with fewer than 10 slices, and that if
there will be n or n + 1 people the minimum number of slices is 2n. If there will
be n or n+ d people where d > 1, the problem is more challenging.

XI-8. There are 100 purses, containing respectively 1, 2, 3, . . . , 100 gold
coins. Can these purses be distributed among five people so that everyone
gets the same number of coins?

Solution. Yes, and there are many ways to do it. One way is first to divide the
purses into groups of two: the purse that has 1 coin and the purse that has 100,
the purse that has 2 and the purse that has 99, and so on, with finally the purse
that has 50 and the purse that has 51. There are 50 groups of purses, and each
group has 101 coins. Give 10 groups to each of the 5 people. Note that everyone
also ends up with the same number of purses.
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Comment. If there are instead 99 purses, add an imaginary empty purse, and group
into “pairs” with sum 99. That gives 50 pairs, and the division can proceed.

Suppose that there are n purses, with 1, 2, 3, . . . , n coins. For which n can
the purses be divided into three groups so that each group has the same number of
coins? What about four groups, five groups, six groups?

XI-9. The medians to the two equal sides of an isosceles triangle meet at
right angles, and the third side has length 12. Find the area of the triangle.

Solution. Label points as in Figure 11.3. Four copies of %BOC can be arranged

A

B C

M N

O

12

Figure 11.3: Perpendicular Medians

around O to make a square of side 12, so %BOC has area 36.
Triangles ACM and BCM have the same area (equal bases AM and BM and

equal heights). For the same reason, %AOM and %BOM have the same area, and
therefore by subtraction %AOC and %BOC have the same area. Thus %AOC has
area 36. By symmetry, %AOB has area 36, so the whole triangle has area 108.

XI-10. Four cards lie on a table. On the top of each card Beth sees one
printed symbol. These are E, T, 2, and 7. Beth knows that any card has a
letter on one side and a number on the other. Alphonse claims that whenever
a card has a vowel on one side, it has an even number on the other. Which
cards must Beth turn over to make sure that all four cards satisfy Alphonse’s
rule?

Solution. The card that shows E must be turned over, for if the number on the
other side isn’t even, then the rule has been violated. The card that shows T
needn’t be touched, for the rule makes no claim about cards with consonants.

Should Beth turn over the card that shows 2? No, because a vowel on the other
side is consistent with the rule, and a consonant is also consistent with the rule.
But Beth must turn over the card that shows 7, because a vowel on the other side
would violate the rule.

Comment. This problem is famous among cognitive psychologists; it is called the
Wason Test. Many people get the wrong answer.
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XI-11. In the United States and Canada, 180 billion soft drink cans are
consumed each year. Two-thirds as many are thrown away as are recycled.
How many cans are not recycled?

Solution. Let 3x be the number that are recycled. Then 2x are thrown away, and
therefore 3x + 2x = 180. (For convenience, the unit of measurement is a billion.
That makes expressions shorter, and saves us the trouble of counting zeros.) So
x = 108, and therefore 72 billion cans are not recycled. The number recycled was
called 3x rather than x to avoid the unpleasantness of dealing with fractions.

Another way: “Guess” that 3 cans are recycled. So 2 are thrown away, for a total of
5. That’s not quite 180 billion: scale up by multiplying everything by 36 billion.

XI-12. One second after firing a rifle at a bottle 224 meters away, Annie
heard the sound of shattering glass. Given that sound travels at 336 meters
per second, what was the average speed of the bullet?

Solution. The sound of the bottle breaking took 224/336 seconds, or more simply
2/3 of a second, to reach Annie. The bullet therefore took 1/3 of a second to reach
the target, and travelled at an average speed of (224)/(1/3), that is, 672 meters per
second.

Comment. Technically this isn’t quite right. The solution assumed that the bullet
travels in a straight line. The actual path is roughly parabolic, deviating, if there
is no wind, by at most a half meter from the straight line path. The answer of 672
is correct for the average value of the component of velocity in the direction of the
target. But the other components of velocity are much smaller than 672, so the
average speed is 672 for all practical purposes.

XI-13. A 5×8 chocolate bar is made up of 1×1 squares. Find the smallest

number of breaks that will break up this bar into its 40 individual squares.
We are not allowed to put two pieces on top of each other and break them
simultaneously.

Figure 11.4: Breaking up a Chocolate Bar

Solution. Perhaps we should experiment with much smaller bars, starting with the
1 × 1 (this requires 0 breaks), and the 1 × 2 (1 break). It is obvious that a 1 × n
bar requires n− 1 steps. The 2× 2 bar can be broken up in essentially one way, so
we can’t do any better than 3 steps.
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The first interesting bar is the 2 × 3. The first break cuts it either into two
1 × 3’s, and then we need 4 more breaks, for a total of 5 steps, or the first break
cuts it into a 1 × 2 and a 2× 2, again for a total of 5 steps. Try a few more. The
work isn’t hard, for we can recycle previous results—that’s a hint that an induction
argument may work. But we need to go through quite a few cases to get to the
8× 5.

After a while we may suspect that no matter how we do the breaking, a p× q
chocolate bar always takes pq − 1 steps, or equivalently that a bar with n squares
takes n− 1 steps.

There is a simple proof (there are also ugly proofs). At each step the number
of pieces increases by 1. We start with one piece and at the end we want n pieces.
However we do it, that takes n− 1 steps, 39 in our case.

XI-14. A T-120 VHS videocassette tape can record exactly 2 hours in SP
mode, 4 hours in LP mode, and 6 hours in EP mode. On a single tape, you
have recorded three episodes of Dawson’s Creek, the first one in SP, the
next in LP, and the last in EP. Each episode lasts exactly one hour. How
many minutes (in SP mode) of blank tape remain?

Solution. The first episode used 60 SP mode minutes, the second used 30, and the
third 20, altogether 110 minutes, leaving 10 minutes of tape.

XI-15. In Mathematics 101, the term mark is calculated by averaging the
test scores—all tests are out of 100, and test scores are integers. Just before
the final test, Alicia realized that if she got 100 on that test, her term mark
would be 91, but that even with a mark as low as 65, she would end up with
a term mark of 86. What was her average going into the final test?

Solution. Let n be the total number of tests in the course, and S the sum of Alicia’s
grades on the first n− 1 tests. Then

S + 100 = 91n, and S + 65 = 86n.

Thus n = 7 and S = 537. The average on the first 6 tests is 89.5.

Another way: We don’t need to use symbols. A swing of 35 marks on the final test,
from 100 down to 65, would change Alicia’s average by 5 marks. So the course has
a total of 7 tests. It follows that right now her marks add up to 7 · 91− 100. Divide
by 6 to find her current average.

Or else observe that getting a mark of 65, that is, 21 marks under 86, would
give her an average of 86. So right now she is 21 marks “over” an 86 average.
Similarly, she is 9 marks “under” a 91 average. So her current average divides the
interval from 86 to 91 in the ratio 21 : 9.

Comment. The solutions that don’t use symbols require concentration, and errors
of reasoning become more likely.
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In the real world, the term mark would be probably be rounded to the nearest
integer, with an average like 81.5 being rounded up. Under that interpretation,
things become more interesting. It turns out that there could also be a total of 6
tests. If Alicia’s first 5 marks add up to 448, then 100 on the last test gives a term
average of 91.33, which rounds to 91, while 65 on the last test gives an average of
85.5, which rounds to 86. So the average going into the final test could also be
89.6.

XI-16. In Canada, the fuel efficiency of a car is defined as the number of
liters of gasoline the car uses to travel 100 kilometers. The United States
uses miles per gallon. A fuel additive claims to increase the number of miles
per gallon by 22%. Find the corresponding percentage change in liters per
100 kilometers.

Solution. Oh no, conversions! But units don’t matter in percentage change. If there
is a 22% increase in the number of miles per gallon, there is also a 22% increase in
the number of yards per tablespoon.

It is therefore enough to find the percentage change in the number of gallons
per mile. If m is the usual number of miles per gallon, then m is increased by 22%,
that is, multiplied by 1.22. So 1/m, the number of gallons per mile, is divided by
1.22, that is, multiplied by about 0.81967. That represents a percentage decrease
of about 18%.

XI-17. In Figure 11.5, OAB is a quarter-circle, OPQR is an inscribed
rectangle, OP = 13 and PA = 5. Calculate the length of PR.

A

B

O
P

QR

Figure 11.5: The Diagonal of an Inscribed Rectangle

Solution. Since OQ and PR are the two diagonals of a rectangle, PR = OQ. But
OQ is equal to the radius of the quarter-circle, which is 13 + 5.

XI-18. Two twins ran a 100 meter race. For a while they were neck and
neck, but the one on steroids drew ahead and won by 3 meters. So the next
time the faster twin started 3 meters behind the usual start line. What
happened?
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Solution. We need to make some assumptions, and these assumptions should be
tested against reality. It is simplest to assume constant speed. Let the steroid
twin’s speed be v meters per second. The loser twin’s speed is then 97v/100. Thus
the time for the steroid twin to run 103 meters is 103/v. In that time, the loser
twin runs (103/v)(97v/100, that is, 99.91 meters.

Unfortunately, the model we used is contrary to fact: sprinters ordinarily do
not reach full speed until some 30 to 40 meters into the race. Here is a better
argument. In the second race, when the steroid twin has run 100 meters, the loser
twin has run only 97. So they are dead even at the 97 meter mark. But the steroid
twin is going faster over the last three meters, and therefore wins.

Comment. The steroid twin’s victory in the first race is due not to a faster start or
a consistently higher speed—the racers were neck and neck for a while—but to a
higher maximum speed. Experienced sprinters reach a maximum speed that they
then maintain to the end. Horses are different. We see a horse surge ahead of
another toward the end of a race and infer that it is speeding up. That’s an optical
illusion: both horses are slowing down, but one is slowing down faster.

XI-19. It takes 50 seconds to pump 20 dollars’ worth of gas into a car.
After 30 more seconds the amount pumped reaches 40 liters. How much
does gas cost per liter?

Solution. So 40 liters “cost” 80 seconds of time, and therefore 1 liter costs 2 seconds.
But each second costs 20/50 dollars. It follows that 1 liter costs 2(20/50) dollars,
that is, 80 cents.

XI-20. We want to manufacture rectangular sheets of paper that can be
cut into two pieces each similar to the original, that is, with the same length
to width ratio. What shape should the sheets be?

Solution. Let the ratio of length to width in the original sheet be λ. When the
sheet is cut into two pieces each similar to the original, the length must be cut in
two. Since length to width ratio is unchanged, we conclude that λ/1 = 1/(λ/2). It
follows that λ2 = 2, and therefore λ =

√
2.

Another way: Each daughter rectangle is similar to the original but has 1/2 the
area. So in going from the original to a daughter, corresponding linear dimensions
are multiplied by 1/

√
2. If the original width was 1 unit, then the new length is 1,

so the original length must have been
√
2.

Comment. British photographic enlarging paper has length to width ratio close to√
2. For example, the A4 sheet measures 297mm by 210mm. The number 297/210

differs from
√
2 by less than 7.3× 10−5 !

The same question can be asked about a box. It turns out that if the smallest
side is 1 then the other two sides must be 21/3 and 22/3. This three-dimensional
version unfortunately has no practical significance. A triangle can be divided into
two pieces each similar to the original if and only if the triangle is right-angled.
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XI-21. A number of the form n(n + 1)/2, where n is a positive integer, is
called a triangular number. The first five triangular numbers are 1, 3, 6, 10,
and 15. How many triangular numbers are there from 50 to 5000?

Solution. We need to count the positive integers n such that

100 ≤ n(n+ 1) ≤ 10000.

These inequalities hold if and only if 10 ≤ n ≤ 99, so there are 90.

XI-22. A number is called a palindrome if it reads the same forwards as
backwards, like 7777 or 747. How many three-digit palindromes are there?

Solution. We can make a complete list and then count. Instead, imagine listing.
The leftmost digit can be any one of 1, 2, . . . , 9, a total of 9 possibilities. For
each of these, there are 10 ways to choose the middle digit. And once the leftmost
digit has been chosen, the rightmost one is determined. So there are 90 three-digit
palindromes.

Comment. The problem of counting n-digit palindromes is almost as easy as the
three-digit case.

First let n be even, say n = 2k. To make an n-digit palindrome, make a k-digit
number, then append on the right the number written backwards. And there are
9× 10k−1 k-digit numbers.

Let n be odd, say n = 2k + 1. To make an n-digit palindrome, take a 2k-digit
palindrome, and insert any digit in the middle. So there are 9 × 10k palindromes.
This isn’t quite right. The reasoning works fine unless k = 0. How many 1-digit
palindromes are there? If we count 0 as a 1-digit number, there are 10, not the 9
that the formula predicts. Maybe 0 shouldn’t be called a 1-digit number.

XI-23. In Figure 11.6, PQ is a diameter of a circle of radius 1, RS is tangent
to this circle, QR and PS are each perpendicular to RS, and ∠SPQ is 45◦.
Find the sum of the lengths of PS and QR.

P Q

R

S

Figure 11.6: The Sum of PS and QR
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Solution. There are many awkward ways to calculate. For example, extend SR
until it meets the extension of PQ at say X . If O is the center of the circle,
and T the point of tangency, then %OTX is an isosceles right-angled triangle. So
OX =

√
2. It follows that QX =

√
2 − 1, and therefore QR = (

√
2 − 1)/

√
2. But

PX = 1 +
√
2, and now we can find PS. Add. The result is 2. The simplicity of

the answer means that there is probably

Another way: This solution yields a more general result, for it doesn’t require
knowing ∠SPQ. Let O be the center of the circle, and T the point of tangency.
The radius OT is parallel to two sides of the trapezoid PQRS, and bisects PQ. It
follows that the length of OT is halfway between the lengths of PS and QR, and
therefore PS +QR = 2.

Another way: Rotate the figure PQRS through 180◦ around the center of the
circle. The rotated figure, together with PQRS, forms a rectangle two of whose
opposite sides are tangent to the circle. Thus the perpendicular distance between
these sides is equal to the diameter of the circle. But this perpendicular distance
is just PS +QR, so PS +QR = 2.

XI-24. Find the smallest positive multiple of 12 whose decimal digits add
up to 42.

Solution. If the decimal digits of a number add up to 42, then since 42 is a multiple
of 3, the number is automatically a multiple of 3. We therefore look for the smallest
positive multiple of 4 whose decimal digits add up to 42.

The number of digits should be as small as possible. Since a four-digit number
can’t have digit sum 42, look at five-digit numbers. The last digit must be even, so
to get up to 42 the first digit must be at least 7. If it is 7, then the last digit must
be 8, and the other digits must be 9’s. But 79998 is not divisible by 4.

So the first digit is 8 or more. If it is 8, then since the last digit is 8 or less, the
remaining digits must be an 8 and two 9’s. But a number that ends in 98 is not
divisible by 4, so the number is 89988.

XI-25. The Lucas numbers 1, 3, 4, 7, . . . obey the rule that any number
after the first two is the sum of the two previous ones. Find the remainder
when the 48-th Lucas number is divided by 4.

Solution. The Lucas numbers grow quite fast, so it would be nice not to compute
the first 48. Note that to calculate the remainder when a + b is divided by m, it
is enough to find the remainders when a and b are divided by m, add them, and if
necessary subtract m to make the result less than m.

So instead of working with the actual Lucas numbers, we can work with re-
mainders. The sequence of remainders is therefore 1, 3, 0, 3, 3, and so on. These
numbers are pleasantly small, and we can get to the 48-th without much trouble.
So we continue, getting 2, 1, 3, and so on.

But we can stop computing. The seventh and eighth entries are respectively
the same as the first and second entries. Since the “next” remainder is always
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determined by the preceding two, there is cycling with period 6. Thus the 48-th
remainder is the same as the sixth, namely 2.

Comment. The cycling helped a lot. Did we just get lucky? Look at the remainders
when the Lucas numbers are divided by the positive integer m. There at most m
possible remainders, and therefore at most m2 pairs of consecutive remainders.
Before we compute the (m2 + 2)-th remainder, we must have seen two matching
pairs of consecutive remainders. So the remainders ultimately are caught in an
endless loop. It turns out that the loop begins with the first two remainders, that
is, there is full cycling.

XI-26. A goat is tethered by a 15-foot rope to a post at the middle of a
long side of a 10× 5 shed. Over how large an area can she graze?

Solution. A quick sketch like Figure 11.7 shows that the goat can reach a half-circle
of radius 15, together with two quarter-circles of radius 10 and two quarter-circles
of radius 5. The combined area is 175π square feet.

Figure 11.7: The Tethered Goat

XI-27. A bridge fanatic has five friends who come over every day to play.
It takes four people to play a hand of bridge. The fanatic takes part in
every hand, so two of the friends have to sit out each hand. This month
the fanatic played 1500 hands. If each of her/his friends played an equal
number of hands, how many hands did each friend play?

Solution. Imagine that after each hand, the fanatic gave a penny to each friend
who played. Any hand involves three of the friends, so this month the fanatic spent
4500 pennies. These were equally distributed among five people, so each friend
played 900 hands.

XI-28. A soccer ball is sewn together in a sweatshop from 32 pieces of
leather, twelve of them regular pentagons and the rest regular hexagons.
The pentagons and hexagons all have the same side length. A seam has to
be sewn wherever two sides meet. How many seams are there?
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Solution. The pentagons have a total of 5 · 12 edges, and the hexagons have 6 · 20
edges. Altogether, the polygons have 180 edges. Any seam takes care of two edges,
so there are 90 seams.

XI-29. A block of cheese with a thin wax coating measures 20 cm by 16 cm
by 16 cm. The entire block is cut into cubes of side 2 cm. What percentage
of these cubes have no wax on them?

Solution. There are 640 cubes. The inner cubes form a 16× 12× 12 block, so there
are 288 of them. But 288/640 = 0.45, so 45% of the cubes have no wax.

XI-30. How many times between noon and midnight are the hour hand and
the minute hand of a clock at right angles to each other?

Solution. There is an easy solution: just stare at the clock for 12 hours. But a
clock of the imagination moves faster.

Between noon and one o’clock, perpendicularity happens twice, shortly after
12:15, and a bit before 12:50. Between one o’clock and two, again it happens twice.
Between two and three, it happens twice, the second time at exactly 3:00. Between
three and four, it happens twice, the first time at exactly 3:00. Of course we won’t
count 3:00 twice. Continue. The complication that occurred at 3:00 occurs again
at 9:00. So the hands are at right angles 22 times.

XI-31. The triangle ABC of Figure 11.8 has a right angle at B. Edge AB

A B

C

Q

72 97 120

Figure 11.8: The Area of %AQC

is 72 units long, and AC = 120. The point Q lies on line segment BC, and
AQ = 97. Find the area of %AQC.

Solution. By the Pythagorean Theorem, (BC)2 = 1202 − 722, so BC = 96. Again
by the Pythagorean Theorem, (BQ)2 = 972 − 722, so BQ = 65. Thus QC = 31,
and the required area is 1116.

XI-32. The five-digit numbers made up of different digits chosen from 1, 2,
3, 4, 5, 6, 7 are listed in increasing order. So the first number is 12345 and
the last is 76543. Find the last number in the first half of the list.
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Solution. Just as many numbers start with 1, 2, or 3 as with 5, 6, or 7. So our
number starts with 4. Half the numbers that start with 4 then continue with 1, 2,
or 3, and the other half with 5, 6, or 7. Our number belongs to the first group, and
is the largest in that group, so it is 43765.

Comment. We took full advantage of symmetry, and ended up doing no counting
at all! It may be worthwhile to look at a slightly less symmetrical situation, such
as finding the last number in the first quarter of the list. If instead we allow
repetitions of digits, the problem is closely connected with the base 7 representation
of a number.

XI-33. Alan entered a judo tournament in the 75 kg class. The rules say
that a contestant is eliminated only after losing 2 matches. Spectators
saw 40 matches in the 75 kg class, including 4 draws, before Alan won the
championship. How many people competed in the 75 kg class?

Solution. There were 36 matches that resulted in a loss. Since it takes 2 losses to
eliminate someone, 18 people were eliminated in these 36 matches. Everyone but
Alan was eliminated, so 19 people competed in the 75 kg class.

XI-34. Three circular gold medallions have radius 6mm, 6mm, and 7mm,
and each is 2mm thick. They are melted down to make a single 2mm thick
circular medallion. Find its radius.

Solution. The volume of a disk of given thickness is proportional to the area of
the disk. Thus the volume is kr2, where r is the radius and k is a constant. It so
happens here that k = 2π, but we don’t need to know that.

The combined volume of the three disks is therefore k(62 + 62 + 72), that is,
121k. If R is the radius of the new disk, then kR2 = 121k, and therefore R = 11.

Comment. The shape of the medallions is irrelevant as long as (i) the thicknesses
are constant and (ii) scaling aside, the shapes are the same.

XI-35. An Egyptian-style pyramid is 50 meters high. The distance from
the top of the pyramid to any corner of the base is 100 meters. Find the
area occupied by the base of the pyramid.

Solution. Let T be the top of the pyramid, and let M be the center of the base. Let
A be one of the corners of the base. Then %TMA is right-angled, its hypotenuse
is 100, and one of its sides is 50. Thus by the Pythagorean Theorem the square on
MA has area 7500.

By drawing the diagonals of the base, we can cut the base into four right-angled
isosceles triangles with legsMA. These triangles can be rearranged in pairs to make
two squares of side MA. So the area of the base is 15000 square meters.
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XI-36. The area of the region inside the bigger circle of Figure 11.9, but
outside the smaller circle, is 144π square meters. The radius of the bigger
circle is 4 meters more than the radius of the smaller circle. Find the sum

Figure 11.9: A Circle Inside a Circle

of the radii of the two circles.

Solution. Let R be the radius of the big circle, and r the radius of the small one.
Then π(R2 − r2) = 144π, and therefore R2 − r2 = 144. Also, R − r = 4. Divide:
R+ r = 144/4 = 36.

XI-37. Find a triangle similar to the 8–15–17 triangle whose area in square
meters is numerically equal to its perimeter in meters.

Solution. Since 82 + 152 = 172, the converse of the Pythagorean Theorem shows
that the triangle is right-angled. It follows that the triangle has area 60. Scale the
8–15–17 triangle by a scale factor λ. The perimeter of the new triangle is 40λ, and
its area is 60λ2. Perimeter and area are equal if λ = 40/60.

Comment. This is a fairly silly problem, because the condition “perimeter is nu-
merically equal to the area” depends on the units with which the sides and area
are measured. So the question couldn’t arise in a genuine physical setting.

XI-38. A regular hexagon H and an equilateral triangle T have the same
perimeter. Find the ratio of their areas.

Solution. Join the center of H to the corners. That splits H into 6 equilateral
triangles, which may be taken to have side of length 1 unit. The area of an equilat-
eral triangle is proportional to the square of its side, so H has area 6k for some k.
There is no need to know that k =

√
3/4. The equilateral triangle with the same

perimeter as the hexagon has sides 2, so T has area 4k. Thus the area of H is to
the area of T as 6 is to 4.

The same idea can be carried out without formulas. Join the midpoints of the
sides of T . That splits T into 4 equilateral triangles of side 1. So the areas are in
the proportion 6 : 4.

XI-39. In Figure 11.11, three of the rectangles have area 25, 30, and 35 as
shown. Find the area of the fourth rectangle.
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Figure 11.10: The Hexagon and the Triangle

25 30

35 ??

Figure 11.11: The Area of the Fourth Rectangle

Solution. Two rectangles with the same height have areas that are proportional to
their bases. So the bases of the two top rectangles are in the proportion 25 : 30. It
follows that the area of the fourth rectangle is (35)(30/25).

XI-40. Suppose that any side of triangle T is greater than any side of
triangle T ′. Is the area of T necessarily greater than the area of T ′? Find
a proof or give a counterexample.

Solution. No, T ′ can have much bigger area than T . For example, let the sides
of T ′ all be 1. Let the sides of T be 4, 2 + ε, and 2 + ε, where ε is a positive
number close to 0, like 10−8. Then poor T is nearly flat and its area is only about
4× 10−4.

XI-41. In Figure 11.12, the outer square is 20 × 20. Find the area of the
inner square.

Figure 11.12: A Square Inside a Circle Inside a Square

Solution. The circle has diameter 20, and therefore the inner square has diagonal
20. Let s be the side of the inner square. By the Pythagorean Theorem, s2 + s2 =
202 = 400. So s2, the area required, is 200. (It would be wasteful to take the square
root and then square the result!)
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Another way: Draw the two diagonals of the inner square, then rotate the inner
square about its center until these diagonals are parallel to the sides of the outer
square. Erase the circle. Note that the outer square is made up of 8 congruent
isosceles right-angled triangles, while the inner square uses 4 of these triangles. So
the area of the inner square is half the area of the outer square.

XI-42. The three altitudes of a triangle have length 1/5, 1/12, and 1/13.
Find the sides of the triangle.

Solution. In any triangle, the product of base and height is twice the area. Thus
the sides of the triangle are 5k, 12k, and 13k, where k is twice the area. It remains
to find k.

Note that 52 + 122 = 132, so by the converse of the Pythagorean Theorem our
triangle is right-angled. Thus twice the area of the triangle is 60k2. We conclude
that 60k2 = k, and therefore k = 1/60.

XI-43. An isosceles triangle T has the property that the bisector of one of
the angles divides T into two isosceles triangles. What can be said about
the angles of T ?

Solution. Let T have vertices A, B, and C, with AB = AC. If the bisected angle
is at A, then by symmetry T splits into two right triangles. If these are to be
isosceles, then ∠ABC = ∠ACB = 45◦, and ∠BAC = 90◦.

Now suppose the bisected angle is at B. Let ∠ABC = 2θ, and let the bisector
of ∠ABC meet AC at D. Since ∠ACB = 2θ, it follows that ∠BDC = 180◦ − 3θ.
Since 4θ < 180◦, in order for %BCD is to be isosceles we need 180◦−3θ = 2θ, that
is, θ = 36◦.

Finally, we check that this value of θ also makes %DAB isosceles. A bit of
angle chasing shows that it does: ∠BAD = ∠DBA = 36◦. The angles of T are
36◦, 72◦, and 72◦.

XI-44. Points A and B are 4 meters apart. Let K be the set of all points
P in three-dimensional space such that %PAB has area 1 square meter.
Describe what K looks like.

Solution. Let ! be the line through A and B, and let h be the perpendicular distance
from P to !. The area of %PAB is 4h/2, so it is 1 if and only if h = 1/2. Thus
K consists of all points P that are at perpendicular distance 1/2 from !. These are
the points on the infinite cylinder of radius 1/2 with central axis !.

XI-45. Circles C1 and C2 lie in the same plane. The first has radius 11, the
second has radius 7, and the circles meet at points 4 units apart. Let a1 be
the area of the region that lies inside C1 but outside C2, and let a2 be the
area of the region inside C2 but outside C1. Find a1 − a2.
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Solution. It is possible, but not pleasant, to calculate the area of the region that
lies inside both C1 and C2. But that’s unnecessary. Let c be the area of this
common region. Then a1 + c = 121π, and a2 + c = 49π, and therefore a1 − a2 =
(a1 + c)− (a2 + c) = 72π.

XI-46. For any real number x, let )x* be the largest integer which is less
than or equal to x. For example, )2.7* = 2, and )−2.7* = −3. Solve the
equation x)x* = 99.

Solution. There is no positive solution x. For if x ≥ 10, then x)x* ≥ 100, while if
0 ≤ x < 10, then x)x* < 90.

Let’s look for negative solutions. If −9 ≤ )x* < 0, then x)x* ≤ 81, while if
)x* ≤ −11, then x)x* > 110. So we look for a solution with )x* = −10. That
forces x = −9.9, which works.

XI-47. In Figure 11.13, the big circle has radius 9, the small circle has
radius 4, and the circles are tangent to each other. The big circle is tangent

A B
!

Figure 11.13: The Distance Between the Points of Tangency

to line ! at the point A, and the small circle is tangent to ! at B. Find the
distance from A to B.

Solution. Let P be the center of the big circle and Q the center of the small circle.
Let T be the point on the line segment PA which is at distance 4 from A. Then
TABQ is a rectangle and PT = 5. Since PQ = 13, it follows by the Pythagorean
Theorem that TQ, and therefore AB, has length

√
132 − 52.

XI-48. Suppose that x2 + 2kx + k ≥ 0 for all x. What can we conclude
about k?

Solution. Look at the parabola y = x2+2kx+k = (x+k)2−k2+k. The minimum
value of y is reached when (x+ k)2 is equal to 0, so the minimum value is −k2 + k.
It follows that y ≥ 0 for all x precisely if −k2 + k ≥ 0, that is, if 0 ≤ k ≤ 1.

XI-49. Solve the equation
√
x2 +

√

(x− 1)2 = 1.



CHAPTER 11. QUICKIES 342

Solution. By generally accepted convention,
√
a means the non-negative number

whose square is a. In particular, the frequently seen assertion
√
4 = ±2 is wrong,

or at least ungrammatical. (There isn’t universal agreement about this.)
In general

√
a2 = a if a ≥ 0, and

√
a2 = −a if a < 0. Thus a shorter name for√

a2 is |a|, and
√

(x− a)2 is the distance between x and a.
Our equation says that the sum of the distances of x from 0 and from 1 is equal

to 1. That’s true for all x such that 0 ≤ x ≤ 1 and nowhere else.

XI-50. Find a polynomial P (x) such that P (x) = x2 when x = 0, ±1, ±2,
but P (3) = 17.

Solution. There are infinitely many possible answers. A reasonable thing to try is
P (x) = x2 + kx(x2− 1)(x2 − 4), for the second term is 0 at x = 0, ±1, and ±2, and
therefore P (x) = x2 at these five points. If we substitute 3 for x in the expression
for P (x) we get 17 = 9 + 120k, so k = 1/15.

XI-51. The shadow of a spherical ball is four times as long as it is wide.
What angle do the sun’s rays make with the ground?

Solution. The sun is so far away that its rays are virtually parallel. If θ is the
angle of elevation of the sun and d is the diameter of the ball, the geometry of the
situation is captured by Figure 11.14. We conclude that sin θ = 1/4, and therefore

d
θ

Figure 11.14: The Shadow of a Ball

θ is about 14.48 degrees.

XI-52. Find the angle between the hour and minute hands of an ordinary
clock at 3:20.

Solution. The only problem here is the weirdness of the units. It would be better
to have 10 hours per day, 10 days per week, 10 weeks per month, and 10 months
per year. That could be done by appropriately adjusting the speed of rotation of
the Earth and its distance from the Sun.

There are 12 hours in one revolution of the hour hand, and 60 minutes in an
hour. Measure angles clockwise from 12:00. At 3:20, the minute hand makes an
angle of (360)(20/60) with the upward vertical. The hour hand makes an angle of
(360)(3 + 20/60)/12 with the upward vertical. The difference is 20◦.
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XI-53. Find, to high accuracy, the angle between 0 and 90 whose tangent
is 0.5. Unfortunately, the calculator’s tan−1 and Solve keys are broken. The
remaining keys work.

Solution. Recall that cos2 x+ sin2 x = 1 for any angle x. If we divide both sides of
this identity by cos2 x, we obtain the identity 1 + tan2 x = sec2 x. Thus if tanx =
0.5, then sec2 x = 1.25. Since our angle has positive cosine, cosx = 1/

√
1.25, and

therefore x = cos−1
(

1/
√
1.25

)

. Now we can use the broken calculator. We get
something like 26.56505118.

XI-54. Simplify

1 + 3 + 5 + · · ·+ 97 + 99

101 + 103 + 105 + · · ·+ 197 + 199
.

Solution. This yields to standard formulas. The arithmetic series in the numer-
ator has sum (50)(100)/2, and the arithmetic series in the denominator has sum
(50)(300)/2. The ratio is 1/3.

Another way: Note that the denominator is equal to

(1 + 3 + · · ·+ 97 + 99) + ((1 + 3 + · · ·+ 97 + 99) + (99 + 97 + · · ·+ 3+ 1)) .

So the denominator consists of three copies of the numerator.

Comment. There is of course nothing special about 99. Galileo mentioned the
general result in 1615. Why should Galileo care? This little problem is connected
with an important development in the history of Physics.

Galileo had, through a combination of experiment and theory, noticed that
when a ball rolls down an inclined plane, and if the distance it travels in the first
second is called 1 unit, then in the next second it travels 3 units, in the second after
that it travels 5 units, and so on. Nowadays this is expressed by saying that the
distance travelled in the first t seconds is kt2 for some constant k. That Galileo’s
version and ours are essentially the same is connected with the fact that 1, 1 + 3,
1 + 3 + 5, 1 + 3 + 5 + 7, and so on are the consecutive perfect squares.

XI-55. The sequence a1, a2, a3, . . . has the property that any term after
the second is equal to the sum of the two preceding terms. Suppose that
the fourth term is 4 and the seventh term is 7. Find the tenth term.

Solution. Let a5 = x. Then a6 = 4 + x, and therefore a7 = x+ (4 + x). It follows
that 2x+ 4 = 7. We conclude that x = 1.5 and therefore a6 = 5.5. Now calculate:
a8 = 12.5, a9 = 19.5, and a10 = 32.

XI-56. Let p and q be consecutive odd primes. Show that there are integers
a, b, and c, all greater than 1, such that p+ q = abc. For example, 31+37 =
2 · 2 · 17.
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Solution. Note that p + q is even and (p + q)/2 (= 1. Since (p + q)/2 lies between
the consecutive primes p and q, it follows that (p + q)/2 is composite. So there
are integers b and c, both greater than 1, such that (p + q)/2 = bc, and therefore
p+ q = 2bc.

XI-57. Express 79 as a sum of perfect fourth powers, using as few fourth
powers as possible.

Solution. There aren’t many possibilities to consider. We can only use 1’s and 16’s.
If we use four 16’s, we need to use fifteen 1’s, for a total of 19 fourth powers. If
we use three or fewer 16’s, the total number of fourth powers is far higher. So the
smallest possible number is 19.

Comment. In his Meditationes Algebraicae (1770), Edward Waring asserted that
every positive integer is the sum of at most 4 positive squares, at most 9 positive
cubes, at most 19 positive fourth powers, at most 37 positive fifth powers, “and
so on.” The result for squares had just been proved by Lagrange. The assertions
about cubes and fourth powers were only proved a few decades ago. It turns out
that 79 is the only positive integer that requires 19 fourth powers. The complex of
problems of this type is called Waring’s Problem. There are still many unresolved
questions connected with Waring’s Problem.

XI-58. A group of 19 mathematics students ordered pizza worth $90.00.
They split the cost as evenly as possible, but since 19 doesn’t divide 9000
evenly, not all the students paid the same price. How many paid the lower
price?

Solution. Divide 9000 by 19. The quotient is 473 (unimportant) and the remainder
is 13. Collect 473 cents from everyone: another 13 cents are needed. So 13 students
each paid an extra cent, and 6 students paid the lower price.

XI-59. There are 6! different six-digit numbers that use each digit from 1
to 6 exactly once. How many of them are divisible by 6?

Solution. If n is one of our six-digit numbers, then the sum of the digits of n is 21.
Since 3 divides 21, it follows that 3 divides all of our numbers.

Thus 6 divides n precisely if n is even. But n is even if and only if its last digit
is even. Since three of our digits are odd and three are even, by symmetry half the
numbers have an even last digit. So 360 of our numbers are divisible by 6.

XI-60. Maybe the NFL will decide that the kick for “the point after” is too
dull, and that only two methods of scoring are allowed: touchdown, for 7
points, and field goal, for 3 points. What scores would then be mathemati-
cally impossible for a team to get?
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Solution. It isn’t possible to score −17 points, or π points. But let’s confine atten-
tion to non-negative integers! Experiment for a while. Scores of 1, 2, 4, 5, 8, and
11 are clearly impossible. Calculate a bit longer, looking without success for the
next impossible number. We prove that 11 is the last impossible number.

Any number n > 14 differs from one of 12, 13, or 14 by a multiple of 3. Since
12, 13, and 14 can be reached, any n > 14 can be reached from one of these by
adding a bunch of field goals.

Comment. Let a and b be positive integers. What integers can be expressed in the
form ax+ by, where x and y range over the non-negative integers?

If for example a and b are both even, then we can’t find integers x and y such
that ax+ by is odd. To get rid of uninteresting examples like this one, assume that
a and b have no common divisor greater than 1.

It turns out that ab−a−b is the largest integer which is not of the form ax+by,
with x and y non-negative integers. In the football example, a = 3, b = 7, and
indeed the largest impossible score is 3 · 7− 3− 7. The following question can lead
to useful numerical exploration: Florida Fried Fat pieces come in boxes of 9 and
buckets of 19. What is the largest number of pieces that can’t be reached exactly
by using a combination of boxes and/or buckets?

XI-61. Find the smallest positive integer n such that there are no 9’s in the
decimal representation of (999)n.

Solution. We should experiment first with multiples of 99. With a calculator that
can be done pretty fast. Without one it can be done faster. The smallest positive
n for which 99n has no 9’s is 12. Now look at multiples of 999.

Note that 999n = 1000n− n. The decimal representation of 1000n ends with
at least three zeros. And 1000−n has at least one 9 in it for a long while, certainly
for n = 1 to 100, and even longer, until 1000 − n = 888. So there is at least one
9 in the decimal expansion whenever n < 112. There are no 9’s in the decimal
expansion of 999 · 112, so n = 112.

XI-62. A kitchen has two electronic timers. One of them, after being turned
on, beeps every five minutes. The second timer beeps every eleven minutes
after it is started. How can these timers be used to time a three-minute egg?

Solution. Start both timers. At the second beep of the eleven-minute timer (that
is, at the 22 minute mark) put the egg in the boiling water. At the fifth beep of
the five-minute timer, that is, at the 25 minute mark, take the egg out.

Comment. Suppose we have an a-minute timer and a b-minute timer, where a and
b are integers. It can be shown that if a and b have no common divisor greater than
1, then any positive integer number of minutes can be timed. So there was almost
nothing special about 5 and 11, and we can freely invent new problems.
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XI-63. Find all four-digit perfect squares N whose decimal expansion has
the form xxyy, where x and y are digits.

Solution. Even if we don’t do any preliminary thinking, there are only 90 candi-
dates, and we can eliminate many of them quickly without tedious calculation. For
example, a perfect square can only end in 0, 1, 4, 5, 6, or 9. But as usual we try to
get some structural insight.

Note that N = 100(11x) + 11y, so 11 divides N exactly. Since N is a perfect
square, 112 must divide N , and therefore 100x+ y must be a multiple of 11. But
100x + y = 99x + (x + y), so 11 must divide x + y. Since x and y are digits, we
conclude that x + y = 11. Now there are very few cases to deal with. But we can
simplify further.

If we replace y by 11 − x in the equation N = 11(100x+ y), we obtain N =
112(9x+ 1). So 9x+ 1 has to be a perfect square. Run x quickly from 2 to 9; only
x = 7 works. Thus y = 4 and N = 7744.


